	PROJEKT BUDOWLANY	
	STADIUM DOKUMENTACI	
INWESTOR ZAMAWIAJĄCY	Wielkopolska Izba Lekarska ul. Nowowiejskiego 51 61-734 Poznań	
JEDNOSTKA PROJEKTOWA	Architekt Eugeniusz Skrzypczak AESK Ul. Lesmiana 16 60-194 Poznań	
OBIEKT	Rozbudowa i przebudowa istniejącego budynku gospodarczego oraz zmiana sposobu użytkowania na funkcje biurowă (sala konferencyjna), planowanej do realizacji na dz. nr 32, arkusz 09, obreb Poznań, położonej w Poznaniu przy ul. Nowowiejskiego 51. Kategoria obiektu: XVI	
TEMAT	Instalacje sanitarne	
DATA	LIPIEC 2017	

mgr inz. Jfrostaw Hernes

PROJEKTANT	mgr inż. Jarosław Hernes WKP/0123/POOS/07	
OPRACOWAŁA	mgr inż. Monika Lipowicz	I Lepovica
SPRAWDZAJȦCY	dr inż. Tomasz Pawłowski WKP/0267/POOS/06	

CZĘŚĆ OPISOWA:

1. WSTEP 11
1.1. PRZEDMIOT OPRACOWANIA 11
1.2. PODSTAWA OPRACOWANIA 11
1.3. ZALOŻENIA WYJŚCIOWE 11
1.4. ZAŁOŻENIA BILANSOWE 12
1.5. BILANS ZAPOTRZEBOWANIA ENERGII 13
1.6. SPEŁNIENIE WYMAGAŃ DOTYCZĄCYCH OSZCZĘDNOŚCI ENERGII ZAWARTYCH W PRZEPISACH TECHNICZNO - BUDOWLANYCH 15
1.7. CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU 17
2. OPIS PROJEKTOWANYCH ROZWIAZAŃ TECHNICZNYCH 17
2.1. INSTALACJE ZEWNETRZNE 17
2.1.1. KANALIZACJA SANITARNA 17
2.1.2. KANALIZACJA DESZCZOWA 18
2.1.3. INSTALACJA WODOCIĄGOWA 21
2.1.4. ZAOPATRZENIE BUDYNKU W CIEPŁO 22
2.2. INSTALACJE WEWNETRZNE - WODNE 22
2.2.1. INSTALACJA WODY CIEPEEJ I ZIMNEJ 22
2.2.2. INSTALACJA WODY PRZECIWPOŻAROWEJ WEWNĘTRZNEJ 26
2.3. INSTALACJE WEWNETRZNE - KANALIZACYJNE 26
2.3.1. INSTALACJA KANALIZACJI SANITARNEJ 26
2.3.2. INSTALACJA SKROPLINOWA 28
2.3.3. INSTALACJA KANALIZACJI DESZCZOWEJ (ODWODNIENIE DACHÓW) 28
2.4. INSTALACJE WEWNETRZNE - WENTYLACYJNE 29
2.4.1. WENTYLACJA MECHANICZNA NAWIEWNO-WYWIEWNA 32
2.4.2. WENTYLACJA MECHANICZNA WYWIEWNA 35
2.4.3. STEROWANIE I AUTOMATYKA SYSTEMÓW WENTYLACYJNYCH 36
2.5. INSTALACJE WEWNETRZNE - INSTALACJA FREONOWA 37
2.5.1. INSTALACJA FREONOWA KLIMATYZATORÓW 37
2.5.2. INSTALACJA FREONOWA CENTRAL WENTYLACYJNYCH 37
2.6. INSTALACJE WEWNETRZNE - INSTALACJA OGRZEWCZA 39
2.6.1. INSTALACJA OGRZEWCZA GRZEJNIKOWA 39
2.7. ZABEZPIECZENIA PRZECIWPOŻAROWE 41
2.8. OCHRONA PRZED HAŁASEM I DRGANIAMI 41
2.9. WYTYCZNE BRANŻOWE 42
2.9.1. BRANŻA ARCHITEKTONICZNO-KONSTRUKCYJNA 42
2.9.2. BRANŻA ELEKTRYCZNA 42
2.9.3. WYTYCZNE AKPIA. 42
3. WYMAGANIA DOTYCZĄCE WYKONANIA 42
4. ZESTAWIENIE NORM I PRZEPISÓW 43
5. INFORMACJA BIOZ 47
6. UWAGI KOŃCOWE 48

CZEŚĆ RYSUNKOWA:

Spis rysunków:

PZT-01 - Mapa zasadnicza. Instalacje zewnętrzne.	Skala 1:500
WM-01 - Instalacja wentylacji mechanicznej z klimatyzacja. Rzut piwnicy.	Skala 1:50
WM-02 - Instalacja wentylacji mechanicznej z klimatyzacja.. Rzut parteru.	Skala 1:50
WM-03 - Instalacja wentylacji mechanicznej z klimatyzacją. Rzut I piętra.	Skala 1:50
CO-01 - Instalacje ogrzewcze. Rzut piwnicy.	Skala 1:50
CO-02 - Instalacje ogrzewcze. Rzut parteru.	Skala 1:50
CO-03 - Instalacje ogrzewcze. Rzut I piętra.	Skala 1:50
CO-04 - Schemat węzła cieplnego.	Skala -
WK-01 - Instalacje wod-kan. Rzut piwnicy.	Skala 1:50
WK-02 - Instalacje wod-kan. Rzut parteru.	Skala 1:50
WK-02 - Instalacje wod-kan. Rzut I piętra.	Skala 1:50
IS-01 - Instalacje sanitarne. Rzut dachu.	

Na podstawie art. 20 ust. 4 ustawy z dnia 7 lipca 1994r. - Prawo budowlane (tekst jednolity Dziennik Ustaw 2006 nr 156 poz. 1118)

OŚWIADCZAMY,

że

„Projekt budowlany budynku biurowego z sala konferencyjna Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań. Kategoria obiektu XVI"
został sporzadzony zgodnie z obowiqzujacymi przepisami oraz zasadami wiedzy technicznej na dzień opracowania projektu.

sygn. akt WOIIB-OKK-SP-0054-41/2007

DECYZJA

Na podstawie art. 24 ust. 1 pkt 2 ustawy z dnia 15 grudnia 2000 r. o samorzadach zawodowych architektow inżynierów budownictwa oraz ubanistów (Dz.U. z 2001 r. Nr 5 poz. 42, z późn. zm.) i art. 12 ust. 1 pkt 1, ant. 12 ust. 3 i 4, art. 13 ust. 1 pkt. l, oraz ust. 4, art. 14 ust. 1 pkt 4 ustawy z dnia 7 lipca 1994 r. Prawo budowlane (tekst jednolity: Dz. U. z 2006 r. Nr 156 poz. 1118) oraz $\S 23$ ust. 1 rozporzadzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r . w sprawie samodzielnych funkcji technicznych w budownictwie (Dz. U. Nr 83 poz. 578)

decyzją Okręgowej Komisji Kwalifikacyjnej WOITB otrzymuje

Pan
 Jarosław Tomasz Hernes

magister inżynier
kierunek: Inżynieria Srodowiska urodzony dnia 02 stycznia 1975 r. w. Poznaniu

UPRAWNIENIA BUDOWLANE nr ewidencyiny WKP/0123/POOS/07

do projektowania bez ograniczeń

w specjalności instalacyjnej w zakresie sieci, instalacji i urządzeń cieplnych, wentylacyjnych, gazowych, wodociagowych i kanalizacyjnych

UZASADNIENIE

W związku z uwzględnieniem w calości żadania strony, na podstawie art. 107 § 4 K pa. odstepuje się od uzasadnienia decyzji. Zakres nadanych uprawnień budowlanych wskazano na odwrocie decyzji.

Pouczenie

1. Podstawa do wykonywania samodzielnych funkcji techniczaych w budownictwie stanowi wpis do centralnego rejestru Glównego Inspektora Nadzoru Budowlanego oraz na wpis na listę czlonków whasciwej izby samorządu zawodowego.
2.Od niniejszej decyzui shuzy odwołanie do Krajowej Komisji Kwalifikacyjnej Polskiej lzby lnzynierów

Budownictwa w Warszawie, za pośrednictwem Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa w Poznaniu
w terminie 14 dni od daty jej doręczenia.

Na podstawie art. 12 ust. 1 pkt 1 i 5 ustawy Prawo budowlane Pan Jarosław Tomasz Hernes jest upoważniony w specjalnosci instalacyjnej w zakresie sieci, instalacji i urzadzeń cieplnych, wentylacyjnych, gazowych, wodociagowych i kanalizacyjnych do: - projektowania, sprawdzania projektów budowlanych w specjalności objetej niniejszymi uprawnieniami i sprawowania nadzoru autorskiego,

- sprawowania kontroli technicznej utrzymania obiektów budowlanych bez ograniczeń.

Zgodnie z § 23 ust. 1 rozporzadzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r . w sprawie samodzielnych funkcji technicznych w budownictwie, niniejsze uprawnienia budowlane uprawniaja do projektowania obiektu budowlanego, takiego jak: sieci i instalacje cieplne, wentylacyjne, gazowe, wodociagowe i kanalizacyjne, z doborem wiaściwych urzadzeń w projekcie budowlanym.

Na podstawie $\S 15$ rozporzadzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r. w sprawie samodzielnych funkcji technicznych w budownictwie, uprawnienia do projektowania stanowia podstawę do sporządzania projektu zagospodarowania dzialki lub terenu w zakresie w/w specjalnosci.

Otrzymuja:

1. Pan Jarosław Tomasz Hernes

60-139 Poznań, ul. Ściegiennego 68 b/1
2.Okregowa Rada Izby
3. Główny Inspektor Nadzoru

Budowlanego
4.a/a

POLSKA
$12 B A$
INZYMIEAOW BUDOWNICTWA

Zaświadczenie

o numerze weryfikacyjnym:
WKP-K1P-FJV-1HZ *

Pan Jarosław Tomasz Hernes o numerze ewidencyjnym WKP/IS/0521/07

adres zamieszkania ul. Ściegiennego 68B/1, 60-139 Poznań
jest członkiem Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa i posiada wymagane ubezpieczenie od odpowiedzialności cywilnej.
Niniejsze zaświadczenie jest ważne do dnia 2017-10-31.

Zaświadczenie zostało wygenerowane elektronicznie i opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu w dniu 2016-10-11 roku przez:

Włodzimierz Draber, Przewodniczący Okręgowej Rady Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa.
(Zgodnie art. 5 ust 2 ustawy z dnia 18 września 2001 r. o podpisie elektronicznym (Dz. U. 2001 Nr 130 poz. 1450) dane w postaci elektronicznej opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu są równoważne pod względem skutków prawnych dokumentom opatrzonym podpisami własnoręcznymi.)

[^0]WIELKOPOLSKA OKREGOWA
IZBA
INZYNIEROOW
BUDOWNICTWA
OKRBGOWA KOMISTA KWALIIKACYMA
sygn. akt WOIB-OKK-SP-0054-194/2006
Poznan, duia 18 grudna 2006 x.

DECYZJA

Na podstavie ant 24 ust 1 plt 2 ustawy z dnia 15 grudnia 2000 y o samorzadach zawodowych architektow.
 ust 314 , art 13 ust. 1 pht 1 . oraz ust. 4 , art. 14 ust. 1 pht 4 ustawy z dria 7 Lipca 1994 r. Prawo budowlane (tekst jednolity: Dz. U. z 2006 I. Nt 156 poz. 1118) orzz $\$ 23$ ust. 1 rozporzadzenia Mimista Transportu i Budownictwa 2 dnia 28 kmietnia 2006 r w sprawie samodzielnych funkejl technicaych w budownictuie (Dz: U. Nr 83 poz 578)
decyzją Okregowej Komisji Kwalifikacyjnej WOIIB otrzymuje

Pan Tomasz Mariusz Pawlowski

doktor inzzynier kienunek: Inzynieria Srodowiska urodzony dnia 21 sierpnia 1973 r w Poznaniu

UPRAWNIENIA BUDOWLANE nr ewidencyiny WKP/0267/POOS/06

do projektowania bez ograniczeń

w specjalnosci instalacyjnej w zakresie sieci, instalacji i urzadzen cieplnych, wentylacyjnych, gazowych, wodociagowych i kanalizacyjaych

UZASADNIENIE

W zwiazku z uwzględnieniem w calości zadania strony, na podstawie art. $107 \mathrm{\$} 4 \mathrm{~K}$ p.a odstepuje sie od uzasadnienia decyzil. Zakres nadanych uprawnien budowlanych wskazano na odwrocie decyzil.

1 Podstawa do wykony wania smodzielnych funkej technicznych w budowhictwie stanowi weis do centralnego rejestra Glownego Inspektora Nadzorn Budowlanego oraz na wpis na liste czlonków wlaseiwel zby samorzadu zawodowego.
2.Od niniejsze decyzi stuy odvolane do Krajowej Komisji Kwalifikacyinc Polskiej Lzby Lnzynerow pomanit Budownictwa w Warsavie, za posirednie w terminie 14 dil od daty jej dotezezenia.

Na podstawie art. 12 ust. 1 pkt 1 i 5 ustawy Prawo budowlane Pan Tomasz Mariusz Pawłowski jest upoważniony w specjalności instalacyjnej w zakresie sieci, instalacji i urzadzeń cieplnych, wentylacyjnych, gazowych, wodociagowych i kanalizacyjnych do: - projektowania, sprawdzania projektów budowlanych w specjalnosé objetej niniejszymi uprawnieniami i sprawowania nadzoru autorskiego,

- sprawowania kontroli technicznej utrzymania obiektow budowlanych

 bez ograniczen.Zgodnie z § 23 ust. 1 rozporządzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r. w sprawie samodzielnych funkcj technicznych w budownictwie, niniejsze uprawnienia budowlane uprawniaja do projektowania obiektu budowlanego, takiego jak: sieci i instalacje cieplne, wentylacyjne, gazowe, wodociagowe i kanalizacyjne, z doborem właściwych urzadzeńn w projekcie budowlanym.

Na podstawie $\S 15$ rozporzadzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r. w sprawie samodzielnych funkcji technicznych w budownictwie, uprawnienia do projektowania stanowia podstawe do sporządzania projektu zagospodarowania dzialki lub terenu w zakresie w/w specjalności.

PRZEWODNICZACY

Otrzymuja:

1. Pan Tomasz Mariusz Pawłowski 60-345 Poznań, ul. Rycerska 39a/16
2.Okregowa Rada Izby
2. Głowny Inspektor Nadzoru

Budowlanego
4.a/a

Zaświadczenie

o numerze weryfikacyjnym:
WKP-4FH-GTU-Z8F *

Pan Tomasz Pawłowski o numerze ewidencyjnym WKP/IS/0110/07

adres zamieszkania ul. Cicha 25, 62-064 Plewiska
jest członkiem Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa i posiada wymagane ubezpieczenie od odpowiedzialności cywilnej.
Niniejsze zaświadczenie jest ważne do dnia 2018-03-31.

Zaświadczenie zostało wygenerowane elektronicznie i opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu w dniu 2017-02-28 roku przez:

Andrzej Mikołajczak, Zastępca Przewodniczącego Okręgowej Rady Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa.

Z Zgodnie art. 5 ust 2 ustawy z dnia 18 września 2001 r. o podpisie elektronicznym (Dz. U. 2001 Nr 130 poz. 1450) dane w postac elektronicznej opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu są równoważne pod względem skutków prawnych dokumentom opatrzonym podpisami własnoręcznymi.)

[^1]

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

1. WSTĘP

1.1. PRZEDMIOT OPRACOWANIA

Przedmiotem niniejszego opracowania jest projekt budowlany instalacji sanitarnych dla inwestycji: "Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań. Kategoria obiektu: XVI."

Zakres instalacji sanitarnych:
a) instalacje zewnętrzne:

- kanalizacji sanitarnej,
- kanalizacji deszczowej,
- wodociągowe,
- ogrzewcze,
b) instalacje wewnętrzne:
- kanalizacji sanitarnej,
- kanalizacji deszczowej,
- wody zimnej, ciepłej użytkowej,
- wody hydrantowej,
- centralnego ogrzewania,
- wentylacji mechanicznej,
- częściowej klimatyzacji.

1.2. PODSTAWA OPRACOWANIA

Podstawą opracowania niniejszego projektu stanowią:

- wytyczne oraz informacje od Inwestora,
- projekt budowlany architektoniczno-konstrukcyjny opracowany przez jednostkę projektową Eugeniusz Skrzypczak,
- warunki Aquanet odnośnie możliwości podłączenia do sieci wodociągowej, kanalizacji sanitarnej oraz deszczowej, nr warunków technicznych DW/IBM/959/391/2017 IBM/802/2758/2016 z dnia 20.01.2017r.,
- obowiązujące przepisy i wytyczne dotyczące projektowania, a w szczególności Rozporządzenie Ministra Infrastruktury z dnia 12.04 .2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. Nr 75 poz. 690 z 12.04.2002 wraz z późniejszymi zmianami),
- ustalenia międzybranżowe.

1.3. ZALOŻENIA WYJŚCIOWE

Instalacje wodno - kanalizacyjne:

- źródłem wody dla celów bytowych i pożarowych dla projektowanego obiektu będzie miejska sieć wodociągowa biegnąca w ulicy Nowowiejskiego. Dla budynku Wielkopolskiej Izby Lekarskiej przewidziano wybudowanie nowego przyłącza wody, z bezpośrednim wpięciem do miejskiej sieci wodociągowej. Dla nowoprojektowanego obiektu przewidziano przyłącze wodociagowe wykonane w technologii rur tworzywowych o średnicy $\varnothing 63 \times 3,8$ PE SDR17 PN10. Projekt przyłącza wodociągowego według oddzielnego opracowania.
- ṡcieki bytowo-gospodarcze oraz wody opadowe zakłada się odprowadzić do istniejącego przyłącza kanalizacji ogólnospławnej,

Instalacje ogrzewcze:

- źródłem ciepła (c.o.) dla projektowanego budynku biurowego z salą konferencyjną będzie istniejący węzeł cieplny zlokalizowany w istniejącym budynku Wielkopolskiej lzby Lekarskiej przy ul. Nowowiejskiego 51 (dz. nr 32, ark.09, obr. Poznań) w Poznaniu.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

- żródłem ciepła dla central wentylacyjnych będą agregaty freonowe typu pompa ciepła umieszczone na zewnątrz budynku (dodatkowo centrale wyposażone będą w szczytowe nagrzewnice elektryczne).

Instalacja wentylacyjna:

- budynek będzie wyposażony w instalację wentylacji mechanicznej nawiewno-wywiewnej z odzyskiem ciepła,
- dla wentylacji pomieszczeń sanitarnych projektuje się osobne linie wentylacyjne wywiewne,

Instalacje chłodnicze - częściowej klimatyzacji komfortu:

- źródłem chłodu dla central wentylacyjnych będą agregaty freonowe typu pompa ciepła umieszczone na zewnątrz budynku,
- w pomieszczeniach biurowych na piętrze oraz pomieszczeniu holu wejściowego na parterze przewiduje się układ chłodzenia komfortu realizowany w oparciu o system freonowy typu Split oraz MultiSplit z jednostkami zewnętrznymi zamontowanymi na dachu budynku,

1.4. ZAŁOŻENIA BILANSOWE

Parametry obliczeniowe powietrza zewnętrznego dla obliczeń zapotrzebowania energii cieplnej / chłodniczej przyjęto zgodnie z tablicą 1.1.

Tablica 1.1. Parametry obliczeniowe powietrza zewnẹtrznego

Pora roku	Temperatura obliczeniowa $\left[{ }^{\circ} \mathrm{C}\right]$	Wilgotność względna $[\%]$	Uwagi
Zima	-18	100	PN-82/B-02403
Lato	+30	45	PN-76/B-03420

Dobór urządzeń chłodzących dla temperatury zewnętrznej $\mathrm{Te}=+32^{\circ} \mathrm{C}$.
Obliczeniowa temperatura powietrza w pomieszczeniach $\left(+/-2^{\circ} \mathrm{C}\right)$:
Zima:
sala konferencyjna,
pomieszczenia biurowe,
aneks kuchenny,
ksero,
toalety,
hol/komunikacja
klatki schodowe
pom. techniczne / pom. gospodarcze.
$\mathrm{t}_{i}=+20^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{i}}=+20{ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{i}}=+20^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{i}}=+20^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{i}}=+20^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{i}}=+20^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{i}}=+1{ }^{\mathrm{C}}$

Lato:

pomieszczenia biurowe,
$\mathrm{t}_{\mathrm{i}}=+24^{\circ} \mathrm{C}$
hol wejściowy główny
$\mathrm{t}_{\mathrm{i}}=+24^{\circ} \mathrm{C}$
pozostałe
$t_{i}=$ wynikowa

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51

1.5. BILANS ZAPOTRZEBOWANIA ENERGII

Bilans mocy urządzeń zużywających energię elektryczną (max w ciągu roku) - $35,0 \mathrm{~kW}$
(moc zainstalowana)
Zapotrzebowanie na ciepło (instalacja c.o.) max w ciągu roku $-23,0 \mathrm{~kW}$
Zapotrzebowanie na ciepło (instalacja freonowa) max w ciagu roku - 45,9 kW
Zapotrzebowanie na chłód (instalacja freonowa) max w ciągu roku $-21,0 \mathrm{~kW}$
Tablica 1.1 Bilans mocy elektrycznej, cieplnej, chłodniczej:

Zapotrzebowanie energii elektrycznej w lecie	31,0	kW
Zapotrzebowanie energii elektrycznej w zimie	35,0	kW
Zapotrzebowanie energii elektrycznej p.poż	3,0	kW
Zapotrzebowanie mocy grzewczej w zimie	23,0	kW
Zapotrzebowanie mocy chłodniczej	45,9	kW

- moc zainstalowana
- moc zainstalowana

[^2]Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI
1.6. SPELNIENIE WYMAGAŃ DOTYCZACYCH OSZCZĘDNOŚCI ENERGII ZAWARTYCH W PRZEPISACH TECHNICZNO - BUDOWLANYCH

Tablica 1.2. Wartości współczynników przenikania ciepła dla projektowanych przegród:
Parametry przegród nieprzezroczystych budowlanych

1. Przegrody scianyzewnetrzne					
Lp.	Nazwa przegrody	Symbol	Wsp. $\mathrm{U}_{\mathrm{c}}\left[\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right]$	Wsp. U U_{c} wg WT2017 $\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$	Warunek spełniony
1	Ściana zewnętrzna nadziemna	Sz	0,19	0,23	Tak
Lp.	Nazwa przegrody	Symbol	Wsp. $\mathrm{U}_{\mathrm{c}}\left[\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right]$	Wsp.U W Wg WT2017 [$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]	Warunek spelniony
1	Ściana na gruncie	Sg	0,17	0,23	Tak

\rightarrow
k
III: Przegrody dach

Lp.	Nazwa przegrody	Symbol	Wsp. $\mathrm{U}_{\mathrm{c}}\left[\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right]$	Wsp. U ${ }_{c}$ wg WT2017 [$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]	Warunek spełniony
1	Dach piwnica	Stp	0,18	0,18	Tak
2	Dach główny	Std	0,13	0,18	Tak
TV. Przegrody podogi na gruncie					
Lp.	Nazwa przegrody	Symbol	Wsp. $\mathrm{U}_{\mathrm{c}}\left[\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right]$	Wsp. U ${ }_{\mathrm{c}}$ wg WT2017 [$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]	Warunek spełniony
1	Posadzka na gruncie	Pg	0,28	0,30	Tak

V. Przegrody Sciany wewnetrizne

Lp.	Nazwa przegrody	Symbol	Wsp. $U_{c}\left[\mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right]$	Wsp.U. Wg WT2017 $\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$	Warunek spetniony
1	Sciana wewn. 1	Sw1	2,25	Brak wymagań	Nie dotyczy
2	Ściana wewn. 2	Sw2	1,61	Brak wymagań	Nie dotyczy

V1. Przegrody stropy wewnetrzne					
Lp.	Nazwa przegrody	Symbol	Wsp. $\mathrm{U}_{\mathrm{c}}\left[\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}\right]$	Wsp. U ${ }_{\mathrm{c}}$ wg WT2017 [$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$]	Warunek spełniony
1	Strop wewnętrzny	Stw	0,47	Brak wymagań	Nie dotyczy

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
\times
Kategoria obiektu: XVI

Parametry przegród przezroczystych

Wymagania izolacyjności cieplnej przewodów i komponentów w instalacjach centralnego ogrzewania, ciepłej wody użytkowej, instalacji chłodu (przy materiale izolacyjnym o innym współczynniku przenikania ciepła niż podano w tabeli należy odpowiednio skorygować grubość warstwy izolacyjnej):

Tablica 1.3 Minimalne grubości izolacji termicznej przewodów lub komponentów instalacji:

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

1.7. CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU

Charakterystyka energetyczna budynku, ekonomiczna analiza środowiskowa oraz analiza opłacalności zastosowania alternatywnych źródeł ciepła stanowi odrębne opracowanie.

2. OPIS PROJEKTOWANYCH ROZWIAZAŃ TECHNICZNYCH

2.1. INSTALACJE ZEWNETRZNE

2.1.1. KANALIZACJA SANITARNA

Ścieki sanitarne odprowadzone zostaną kanalizacją podposadzkową do instalacji kanalizacji sanitarnej zewnętrznej z odprowadzeniem do projektowanej pompowni sanitarnej o średnicy $\varnothing 1200$, a stamtąd odcinkiem łłocznym do nowej studzienki kanalizacji sanitarnej o średnicy $\varnothing 1000$. Następnie projektuje się odpływ ścieków za pomocą istniejących rurociągów kanalizacji sanitarnej do studni rewizyjnej, skąd ścieki odprowadzane są do kanału ogólnospławnego o średnicy $\varnothing 300$ zlokalizowanego w ul. Nowowiejskiego.

Ze względu na odprowadzenie ścieków z najniższej podpiwniczonej kondygnacji budynku zaprojektowano pompownię sanitarną $\varnothing 1200$ wyposażoną w pompę zatapialna.

Parametry techniczne pompowni:
wydajność $\mathrm{Q}=2,2 \mathrm{dm}^{3} / \mathrm{s}$
wysokości podnoszenia $\mathrm{H}=\sim 5,0 \mathrm{mH}_{2} \mathrm{O}$
moc elektryczna $\mathrm{Nel}=2,1 \mathrm{~kW}(1 \times 230 \mathrm{~V})$

- Bilans ścieków sanitarnych:
- średni dobowy zrzut ścieków sanitarnych

$$
\text { Qd_śr }=0,7 \mathrm{~m} 3 / \mathrm{d}
$$

- maksymalny sekundowy zrzut ścieków sanitarnych
qs_max $=2,2 \mathrm{dm} 3 / \mathrm{s}$
Uszczegółowiony bilans wodno-kanalizacyjny - patrz rozdział dotyczący instalacji wewnętrznych wod-kan.

WYKONANIE

Odcinki zewnętrznych instalacji kanalizacji wykonać z rur litych PVC-U kl. S (SDR 34, SN 8) (wymiar zgodnie z rysunkiem) łączonych na kielich z uszczelka.
Studnie kanalizacyjne stosować prefabrykowane z kręgów betonowych wykonanych z betonu klasy C35/45 i wodoszczelności W10. Studnie przykryć włazem żeliwnym ø600 typu ciężkiego D400 (drogi, przejazdy, parkingi).
Dno studzienek powinno być elementem stanowiącym monolityczne połączenie kręgu i płyty dennej. W prefabrykowanym dnie wyprofilować kinetę $\mathrm{h}=0,75 \mathrm{Dn}$ z betonu wodoszczelnego oraz osadzić króćce połączeniowe do połączenia z rurociągami typu PVC.
Prefabrykowane elementy studzienek łączyć za pomocą uszczelek elastomerowych. Stopnie złazowe wykonać z prętów stalowych zabezpieczonych tworzywem. Wymiary stopni: 30 cm szeroki i na wysokości co 25 cm .
Montaż studni wykonać w gotowym, suchym wykopie. W przypadku natrafienia na wodę gruntową należy, na czas montażu studni, obniżyć jej poziom (igłofiltry lub drenaż w zależności od napotkanych warunków gruntowych). W podłożu ułożyć 20 cm podsypkę żwirową. Studnie prefabrykowane należy posadowić na wypoziomowanej płycie

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
żelbetowej, z betonu C 16/20 o grubości min. $10-15 \mathrm{~cm}$ i o średnicy min. $0,10 \mathrm{~m}$ większej niż średnica zewnętrzna kręgu betonowego.
Wykopy wykonywać mechaniczne, a w miejscach spodziewanych skrzyżowań z innymi instalacjami (zgodnie z załączoną mapką) ręczne. Ściany wykopów zabezpieczyć przez szalowanie. Wykonane wykopy oznaczyć przez ustawienie zapór pomalowanych na jaskrawe kolory. Rury układać na podsypce piaskowej gr. 15 cm . Rurociąg obsypać piaskiem o grubości: 30 cm ponad wierzch rury.
Podsypkę i obsypkę zagęścić do współczynnika 1,0 wg Proctora.
Powyżej wykop zasypać gruntem spoistym z zagęszczeniem warstwami co 20 cm do współczynnika 1,0 Proctora. Na obsypce (na całej długości rurociągu) rozpiąć taśmę lokalizacyjną.
Przy odkopywaniu istniejących studzienek robić to równomiernie wokół nich, aby zapobiec przesuwaniu się kręgów na skutek jednostronnego naporu gruntu.

RODZAJ I WSKAŹNIKI ZANIECZYSZCZENIA ŚCIEKÓW

Wprowadzane do sieci kanalizacji sanitarnej ścieki z budynków są ściekami bytowymi, w których nie są przekroczone wskaźniki zanieczyszczeń określone w Rozporządzeniu Ministra Budownictwa z dnia 14 lipca 2006r. w sprawie sposobu realizacji obowiązków dostawców ścieków przemysłowych oraz warunków wprowadzania ścieków do urządzeń kanalizacyjnych.

W ściekach sanitarnych nie będą występowały substancje szczególnie szkodliwe określone w załączniku do Rozporządzenia Ministra Środowiska z dnia 10.11.05r (Dz.U nr 233 z dnia 30.11.05r poz. 1988).

2.1.2. KANALIZACJA DESZCZOWA

Kanalizacja deszczowa z dachu budynku oraz terenu objętego inwestycją będzie zbierać wodę opadową poprzez wpusty dachowe (podgrzewane) oraz wpusty uliczne i odprowadzać ją będzie poprzez istniejącą instalację do studni z regulatorem przepływu ($5 \mathrm{dm} 3 / \mathrm{s}$), a następnie do studni przyłączeniowej ogólnospławnej i dalej do kanału ogólnospławnego o średnicy $\varnothing 300$ wykonanego z rur kamionkowych w ulicy Nowowiejskiego.

Z uwagi na zwiększenie ilości odprowadzanych wód opadowych projektuje się retencję w postaci studni retencyjnej $\varnothing 1500$, wg warunków Aquanet ilość odprowadzanych wód opadowych nie może ulec zwiększeniu w stosunku do obecnej ilości.

Bilans wód deszczowych obliczono dla deszczu miarodajnego o czasie trwania minimum 15 minut oraz o prawdopodobieństwie wystąpienia $p=20 \%$ (raz na 5 lat). Jednostkowe natężenia deszczu przyjęto w wysokości qt $=$ $132 \mathrm{dm} 3 / \mathrm{s}$ ha.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
\propto
Kategoria obiektu: XVI

BILANS WÓD DESZCZOWYCH - STAN ISTNIEJĄCY
BUDYNEK - WIL
POZNAŃ
NOWOWIEJSKIEGO

BILANS ŚCIEKÓW DESZCZOWYCH - STAN ISTNIEJACY

powierzchnia	pow. ha	pow. ha	nat deszczu	wsp. Spływu	qs
	$[\mathrm{m} 2]$	$[$ ha]	$[1 / \mathrm{s} \mathrm{ha]}$		$[/ \mathbf{s}]$
dachy $>15^{0}$	160	0,016	132	1,0	0,8
dachy $<15^{0}$	43	0,004	132	0,6	$\mathbf{0 , 5}$
teren utwardzony	591	0,059	132	0,05	$\mathbf{4 , 7}$
teren zielony	238	0,024	132	1,0	$\mathbf{0 , 2}$
z działki nr 49, dachy $>15^{0}$	337	0,034	132	0,6	$\mathbf{4 , 4}$
z działki nr 49, teren utwardzony	97	0,010	132	$\mathbf{0 , 8}$	

$\left.\begin{array}{rcr}\text { qs_deszcz_dachy } & = & 7,0 \\ \text { qs_deszcz_parkingi_teren } & & {[1 / \mathrm{s}]} \\ = & 5,6 & {[1 / \mathrm{s}]} \\ \text { qs_deszcz } & = & 12,6\end{array}\right][1 / \mathrm{s}]$

BILANS WÓD DESZCZOWYCH - STAN PROJEKTOWANYCH

BUDYNEK - WIL
 POZNAŃ
 NOWOWIEJSKIEGO

BILANS ŚCIEKÓW DESZCZOWYCH - STAN PROJEKTOWANY

qs_deszcz_dachy	$=$	8,5
qs_deszcz_parkingi_teren		$[1 / \mathrm{s}]$
$=$	4,4	$[1 / \mathrm{s}]$
qs_deszcz $=$	12,8	$[1 / \mathrm{s}]$

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 5
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI
Retencja wód opadowych realizowana będzie w studniach deszczowych istniejących oraz w nowej studni retencyjnej o średnicy $\emptyset 1500$.

OBLICZENIA RETENCJI DESZCZU
obliczenie wielkości zbiornika retencyjnego deszczu wg ATV-A117

(deszcz 15minut 1 raz na 5lat)
(t-czas dopływu wód opadowych do zbiornika)

OBLICZENIE ZŁADU INSTALACJI ZEWNĘTRZNEJ NA TERENIE INWESTORA Bez objętości wypełnienia rurociągów

nazwa	średnica wewnetrzna	głębokośćc	ilość	objętość
$[-]$	$[\mathrm{mm}]$	$[\mathrm{m}]$	$[\mathrm{szt}]$	$[\mathrm{m} 3]$
studnia istniejaca	1000	2,15	1	1,69
studnia istniejąca	1000	1,75	1	1,37
studnia istniejąca	1000	1,95	1	1,53
studnia istniejąca	1000	1,75	1	1,37
studnia projektowana	1500	1,75	1	3,09

Zgodnie z Rozporządzeniem Ministra środowiska z dn. 24 lipca 2006 w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska §19 nie ma potrzeby stosowania separatora substancji ropopochodnych z terenu parkingu gdyż jego powierzchnia nie przekracza wartości granicznej tj. 0,1 ha.

WYKONANIE

Odcinki zewnętrznych instalacji kanalizacji wykonać z rur litych PVC-U kl. S (SDR 34, SN 8) wymiar zgodnie z rysunkiem łączonych na kielich z uszczelka.

Studnie kanalizacyjne stosować prefabrykowane z kręgów betonowych wykonanych z betonu klasy C35/45 wodoszczelności W10. Studnie przykryć włazem żeliwnym ø600 typu ciężkiego D400 (drogi, przejazdy, parkingi).

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

Dno studzienek powinno być elementem stanowiącym monolityczne połączenie kręgu i płyty dennej. W prefabrykowanym dnie wyprofilować kinetę $h=1,0 \mathrm{Dn} z$ betonu wodoszczelnego oraz osadzić króćce połączeniowe do połączenia z rurociągami typu PVC.
Prefabrykowane elementy studzienek łączyć za pomocą uszczelek elastomerowych. Stopnie złazowe wykonać z prętów stalowych zabezpieczonych tworzywem. Wymiary stopni: 30 cm szeroki i na wysokości co 25 cm
Montaż studni wykonać w gotowym, suchym wykopie. W przypadku natrafienia na wodę gruntową należy, na czas montażu studni, obniżyć jej poziom (igłofiltry lub drenaż w zależności od napotkanych warunków gruntowych). W podłożu ułożyć 20 cm podsypkę żwirową. Studnie prefabrykowane należy posadowić na wypoziomowanej płycie żelbetowej, z betonu C $16 / 20$ o grubości min. $10-15 \mathrm{~cm}$ i o średnicy min. $0,10 \mathrm{~m}$ większej niż średnica zewnętrzna kręgu betonowego.

Wykopy wykonywać mechaniczne, a w miejscach spodziewanych skrzyżowań z innymi instalacjami (zgodnie z załączoną mapka) ręczne. Ściany wykopów zabezpieczyć przez szalowanie. Wykonane wykopy oznaczyć przez ustawienie zapór pomalowanych na jaskrawe kolory. Rury układać na podsypce piaskowej gr. 15 cm . Rurociąg obsypać piaskiem o grubości: 30 cm ponad wierzch rury. Podsypkę i obsypkę zagęścić do współczynnika $1,0 \mathrm{wg}$ Proctora.
Powyżej wykop zasypać gruntem spoistym z zagęszczeniem warstwami co 20 cm do współczynnika 1,0 Proctora. Na obsypce (na całej długości rurociągu) rozpiąć taśmę lokalizacyjna.
Przy odkopywaniu istniejących studzienek robić to równomiernie wokół nich, aby zapobiec przesuwaniu się kręgów na skutek jednostronnego naporu gruntu.

2.1.3. INSTALACJA WODOCIĄGOWA

Dla projektowanego obiektu projektuje się nowe przyłącze wodociągowe włączone do istniejącej miejskiej sieci wodociagowej biegnącej w ulicy Nowowiejskiego - zgodnie z warunkami Aquanet

Projekt przyłącza wodociągowego według oddzielnego opracowania.

Bilans wody dla budynku przedstawia się następująco

- średnie dobowe zapotrzebowanie wody (bytowe)

$$
\text { Qd_śr }=0,7 \mathrm{m3} / \mathrm{d}
$$

- maksymalne sekundowe zapotrzebowanie wody (bytowe)

$$
\text { qs_max }=1,0 \mathrm{dm} 3 / \mathrm{s}
$$

- zapotrzebowanie wody do wewnętrznego gaszenia pożaru
qs_ppoż_wew $=2,0 \mathrm{dm} 3 / \mathrm{s}$ (dwa hydranty wewnętrzne DN25)
Uszczegółowiony bilans wodno-kanalizacyjny - patrz rozdział dotyczący instalacji wewnętrznych wod-kan

WYKONANIE

Przyłącze wody (odcinek od sieci w ulicy Nowowiejskiego do pomieszczenia wodomierzowego) projektuje się z rur polietylenowych $\varnothing 63 \times 3,8$ PE SDR 17 PN10.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
a Kategoria obiektu: XVI
W pomieszczeniu wodomierzowym zamontowany będzie zestaw wodomierzowy - wodomierz, zawór antyskażeniowy, filtr wodny oraz armatura odcinająca. Szczegółowe obliczenia, dobory oraz dane techniczne zostana zawarte w oddzielnym projekcie przyłącza wodociągowego
Z uwagi na to, że przewód wodociągowy wykonany będzie z PE, nie ma potrzeby izolowania go od prądów błądzących.
Na wykonanym wodociągu przed całkowitym zasypaniem ułożyć taśmę lokalizacyjną - ostrzegawczą z wkładką metalową 30 cm od wierzchu rury. Wkładkę metalową połączyć z trzpieniem metalowym zasuwy.
Wykopy wykonać metodą wykopu otwartego.
W miejscach skrzyżowania trasy przyłącza z istniejącym uzbrojeniem należy roboty wykonywać ręcznie przy zachowaniu szczególnej ostrożności w trakcie wykonywania robót.
Rurociąg ułożyć na podsypce piaskowej gub. 20 cm i obsypany piaskiem do wysokości 25 cm ponad wierzch rury. Podsypkę i obsypkę zagęścić do współczynnika $1,0 \mathrm{wg}$ Proctora.
Powyżej wykop zasypać gruntem spoistym z zagęszczeniem warstwami co 20 cm do współczynnika 1,0 Proctora.
Wykonane przyłącze poddać próbie szczelności na ciśnienie robocze w ciągu 30 minut ($1,5 \times$ ciśnienie robocze), a przed oddaniem do eksploatacji przeprowadzić intensywne płukanie przez około 30 minut przy maksymalnym wydatku punktów czerpania wody.

- 2.1.4. ZAOPATRZENIE BUDYNKU W CIEPŁO

Źródłem ciepła (c.o.) dla projektowanego budynku biurowego z salą konferencyjną będzie istniejaccy węzeł cieplny zlokalizowany w istniejącym budynku Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 (dz. nr 32, ark.09, obr. Poznań) w Poznaniu.

Projektowaną instalację centrainego ogrzewania należy zabezpieczyć przed niekontrolowanym wzrostem ciśnienia za pomocą naczynia wzbiorczego oraz zaworu bezpieczeństwa - szczegóły na etapie projektu wykonawczego.

Bilans grzewczy budynku:

- centraine ogrzewanie

Qc.o. $=23 \mathrm{~kW}$
Doprowadzenie czynnika grzewczego z istniejącego węzła projektuje się wykonać jako odcinek prowadzony w gruncie - podwójnym rurociagiem preizolowanym PE.

Miejscem wpięcia będzie główny rurociąg instalacji c.o. niskoparametrowej w istniejącym budynku.

2.2. INSTALACJE WEWNETRZNE - WODNE

2.2.1. Instalacja wody ciepłej i zimnej

Obiekt zakłada się wyposażyć w instalację wody zimnej i ciepłej.
Źródlem wody dla budynku będzie miejska sieć wodociągowa.
Ciepła woda użytkowa podgrzewana będzie w pojemnościowych elektrycznych podgrzewaczach c.w.u.
Na instalacji na cele socjalno-bytowe przewiduje się elektromagnetyczny zawór pierwszeństwa, który ma za zadanie zapewnienie priorytetu dostarczenia wody do instalacji przeciwpożarowej. W przypadku pożaru i ewentualnego

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

$$
\alpha
$$

uszkodzenia instalacji wodociągowej bytowo-gospodarczej zawór automatycznie się zamyka zapewniając wymaganą ilość wody w instalacji przeciwpożarowej.

Główne rozprowadzenia wody projektuje się w przestrzeni podstropowej piwnicy.
Na podejściach pod przybory zamontować należy zawory kulowe odcinające. Na pionie zaprojektowano zawory odcinające ze spustem.

Rurociągi cieplej wody użytkowej bez cyrkulacji zgodnie z przepisami mogą mieć pojemność wodną do $3 \mathrm{dm}^{3}$, według zaprojektowanych rozwiązań odcinki rurociągów mają objętość mniejszą niż krytyczna, w związku z czym nie projektuje się i instalacji cyrkulacyjnej.

Bilans zapotrzebowania wody zimnej dia obiektu:

$[-]$	Zapotrzebowanie Qd_j	Przyjęta ilośćc L	Dobowe zużycie wody Qd=Qd_ $\times \mathrm{L}$
Zapotrzebowanie wody dla jednego pracownika Qd_p	$15 \mathrm{dm}^{3} /$ osobę/doba	6 pracowników	$90 \mathrm{dm}^{3} / \mathrm{doba}$
Zapotrzebowanie wody dla jednego gościa Qd_g	$6 \mathrm{dm}^{3} /$ osobę/doba	102 gości	$612 \mathrm{dm}^{3} / \mathrm{doba}$

Qd = Qd_p + Qd_g

- $\mathrm{Qd}=90+612=702 \mathrm{dm}^{3} /$ doba

Sumaryczne dobowe zużycie wody $Q d=0,702 \mathrm{~m}^{3} /$ doba.
Średnie godzinowe zużycie wody zimnej.

$$
\begin{aligned}
& \text { Qh_śr }=\mathrm{Qd} / \mathrm{T} \\
& \text { Przewidywany czas użytkowania obiektu } T=8 \mathrm{~h} / \text { doba } \\
& \text { Qh_śr }=0,702 / 8=0,088 \mathrm{~m} 3 / \mathrm{h}
\end{aligned}
$$

Maksymalne godzinowe zużycie wody zimnej.

```
Qh_max = Qh_śr x Nh
Współczynnik nierównomierności godzinowej, obliczony wg zależności
\(\mathrm{Nh}=9,32 \times \mathrm{L}^{-0,244}\)
Gdzie \(L=\) ilość użytkowników \(=6+102=108\) osób
\(\mathrm{Nh}=9,32 \times 108^{-0,244}\)
\(\mathrm{Nh}=2,97\)
Qh_max \(=0,702 \times 2,97=0,26 \mathrm{~m} 3 / \mathrm{h}\)
```


Bilans zapotrzebowania ciepłej wody dla obiektu:

A
Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

$[-]$	Zapotrzebowanie Qd_j	Przyjęta ilość L	Dobowe zużycie wody Qd=Qd_j $\times \mathrm{L}$
Zapotrzebowanie wody dla jednego pracownika Qd_p	$5 \mathrm{dm} 3 /$ osobę/doba	6 pracowników	$30 \mathrm{dm} 3 / \mathrm{doba}$
Zapotrzebowanie wody dla jednego gościa Qd_g	$2 \mathrm{dm} 3 / o s o b e ̨ /$ doba	102 gości	$204 \mathrm{dm} 3 / \mathrm{doba}$

$Q d=Q d _p+Q d _p$
$\mathrm{Qd}=30+204=234 \mathrm{dm} 3 /$ doba
Sumaryczne dobowe zużycie wody ciepłej $Q d=0,234 \mathrm{~m} 3 /$ doba.
Średnie godzinowe zużycie wody ciepłej.
Qh_śr = Qd / T

Przewidywany czas użytkowania obiektu T=8 h/doba
Qh_śr $=0,234 / 8=0,029 \mathrm{~m} 3 / \mathrm{h}$
Maksymalne godzinowe zużycie wody zimnej.
Qh_max = Qh_śr x Nh
Współczynnik nierównomierności godzinowej, obliczony wg zależności
$\mathrm{Nh}=9,32 \times \mathrm{L}^{-0,244}$
Gdzie $L=$ ilość użytkowników $=6+102=108$ osób
$\mathrm{Nh}=9,32 \times 108^{-0,244}$
$\mathrm{Nh}=2,97$
Qh_max $=0,029 \times 2,97=0,087 \mathrm{~m} 3 / \mathrm{h}$

Przepływ obliczeniowy wody zimnej i ciepłej dla obiektu:

$[-]$	Ilość sztuk	Przepływ jednostkowy q_n	Przepływ sumaryczny q_n
Pisuary q_pi	2	$0,30 \mathrm{dm} 3 / \mathrm{s}$	0,6
Zlewozmywaki q_zl	3	$0,14 \mathrm{dm} 3 / \mathrm{s}$	0,42
Umywalki q_um	6	$0,14 \mathrm{dm} 3 / \mathrm{s}$	0,84
Płuczki zbiornikowe q_zb	6	$0,13 \mathrm{dm} 3 / \mathrm{s}$	0,78
Zawory ze złączka q_zz	1	$0,3 \mathrm{dm} 3 / \mathrm{s}$	0,3

```
    AN
```

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI
$\sum_{q_{-} n} q_{n} q_{-} p i+q_{-} z l+q_{_} u m+q_{-} z b+q_{-} z z$
$\sum q_{-} n=0,6+0,42+0,84+0,78+0,3=2,94$
Przepływ obliczeniowy określono w oparciu o normę PN-92/B-01706 - "Instalacje wodociagowe - wymagania w projektowaniu" wzór (7):
$q=0,4 \times\left(\sum q _n\right) 0,54+0,48$
$q=0,4 \times(2,94) 0,54+0,48=2,48 \mathrm{dm} 3 / \mathrm{s}=1,2 \mathrm{dm}^{3} / \mathrm{s}$

Przepływ obliczeniowy tylko wody ciepłej dla obiektu:

$[-]$	Ilość sztuk	Przeplyw jednostkowy q_n	Przepływ sumaryczny q_n
Zlewozmywaki q_zl	3	$0,07 \mathrm{dm} 3 / \mathrm{s}$	0,21
Umywalki q_um	6	$0,07 \mathrm{dm} 3 / \mathrm{s}$	0,42

$\sum q_{_} n=q_{-} z l+q_{_} u m$
$\sum q_{n} n=0,21+0,42=0,63$
Przepływ obliczeniowy określono w oparciu o normę PN-92/B-01706 - "Instalacje wodociągowe - wymagania w projektowaniu" wzór (7):
$q=0,4 \times\left(\sum q _n\right) 0,54+0,48$
$q=0,4 \times(0,63) 0,54+0,48=0,8 \mathrm{dm} 3 / \mathrm{s}$

WYKONANIE

Instalację wody bytowej (zimną i ciepłą) projektuje się z rur polipropylenowych PP łączonych zgrzewaniem, zgodnie z wymaganiami wybranego dostawcy systemu.
Zawiesia i podpory rurociagów PP wykonać wg wymagań dostawcy systemu,
Przewody prowadzić w taki sposób, aby umożliwić samokompensację przewodów.
Przewody zaizolować termicznie:

- rurociągi wody zimnej w części ogrzewanej budynku izolować izolacją przeciwroszeniową - grubość izolacji

9 mm ,

- rurociągi wody ciepłej izolować izolacją termiczną zgodnie z wymaganiami DU 75 poz 690 z 2002 z poprawkami.

Przejścia instalacji rurowych przez przegrody budowlane wykonać w rurach osłonowych.
Przejścia instalacji rurowych przez przegrody budowlane stanowiące przegrodę ogniową zabezpieczyć do wymaganej odporności ogniowej.
Ułożenie przewodów rozdzielczych należy wykonać ze spadkiem 0,3\% w kierunku odwodnień.
Instalacja w wykonaniu minimum PN10, ciśnienie próby instalacji $p=10,0$ bar.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
a. Kategoria obiektu: XVI

2.2.2. Instalacja wody przeciwpożarowej wewnętrznej

Celem właściwego zabezpieczenia budynku przed pożarem zaprojektowano instalację wody hydrantowej. Instalacja wody hydrantowej zasilana będzie przyłączem wody z miejskiej sieci wodociągowej.

Dla zapewnienia ciśnienia w instalacji zaprojektowano zestaw hydroforowy o parametrach:
Wydajność $V=2,0 \mathrm{dm}^{3} / \mathrm{s}$
Wysokość podnoszenia $\mathrm{dp}=36 \mathrm{mH}_{2} \mathrm{O}$
Moc elektryczna Nel=2,5kW (3x400V)
Zestaw hydroforowy będzie przeznaczony dla celów pożarowych.
W budynku projektuje się cztery hydranty HP 25 z odcinkiem węża półsztywnego o długości $30 \mathrm{mb}+3 \mathrm{mb}$ zasięg rzutu wody z prądownicy - montaż w strefach pożarowych ZL.

Hydranty mają możliwość odcięcia poprzez zawór odcinający znajdujący się w szafce hydrantowej na wys. $\sim 1,35 \mathrm{~m}$ nad posadzka.

Zgodnie z obowiązującymi wymaganiami dla części budynku objętego zakresem opracowania przy określaniu zapotrzebowania wody na cele pożarowe zakłada się równoczesność pracy dwóch hydrantów. Zapotrzebowanie - wody do celów przeciwpożarowych wynosi qs_ppoz=2x1,0 l/s (2xDN25).

Wymagane ciśnienie wypływu z pojedynczego hydrantu 2 bary $=20 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}$.

WYKONANIE

Instalację wewnętrznej wody przeciwpożarowej projektuje się z rur stalowych ocynkowanych łączonych na gwint z uszczelnieniem z konopia czesanego, zgodnie z wymaganiami wybranego dostawcy.
a Zawiesia i podpory rurociągów wykonać zgodnie z katalogiem KER (np. KER 75/8.91 + pręt gwintowany, KER $75 / 8.91+$ KER $75 / 8.61$) lub mocować za pomocą uchwytów systemowych i wsporników wg systemu wybranego dostawcy w odległościach wynikających ze średnicy rurociągu.
Przewody prowadzić w taki sposób, aby umożliwić samokompensację przewodów.
Przewody zaizolować termicznie.

- rurociągi wody pożarowej w części ogrzewanej budynku izolować izolacją przeciwroszeniową - grubość izolacji 9 mm

Przejścia instalacji rurowych przez przegrody budowlane wykonać w rurach osłonowych.
Przejścia instalacji rurowych przez przegrody budowlane stanowiące przegrodę ogniową zabezpieczyć do wymaganej odporności ogniowej.
Ułożenie przewodów rozdzielczych należy wykonać ze spadkiem $0,3 \%$ w kierunku odwodnień.
Instalacja w wykonaniu minimum PN10, ciśnienie próby instalacji $p=15,0$ bar.

2.3. INSTALACJE WEWNETRZNE - KANALIZACYJNE

2.3.1. Instalacja kanalizacji sanitarnej

Projektowana instalacja kanalizacji sanitarnej będzie odprowadzać ścieki z odbiorników zlokalizowanych w węzłach sanitarnych i pom. gospodarczych.

Strumień objętościowy ścieków odprowadzanych projektowaną kanalizacją sanitarną wyznaczono zgodnie z PN-EN 12056-2:2002 w oparciu o przybory sanitarne i na podstawie zależności:

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
a Kategoria obiektu: XVI

$[-]$	Ilość sztuk	Jednostkowy równoważnik odpływu DU	Równoważnik odpływu DU
Pisuary DU_pi	2	0,5	1,0
Zlewozmywaki DU_zl	3	0,8	2,4
Umywalki DU_um	6	0,5	3,0
Płuczki zbiornikowe DU_zb	6	0,0	12,0
Zawory ze złączką DU_zz	1	0,8	

```
\(\sum D U=D U \_p i+D U \_z l+D U \_u m+D U \_z b+D U \_z z+D U \_w p\)
\(\sum D U=1,0+2,4+3,0+12+0,8=19,2\)
```

- $\quad \mathrm{q}_{\mathrm{s}}=K^{*} \sqrt{ } \Sigma D U$ - maksymalny sekundowy zrzut ścieków sanitarnych $\left[\mathrm{dm}^{3} / \mathrm{s}\right]$
gdzie:

$$
\begin{aligned}
& \sum_{\text {K }}^{\text {DU odpływ charakterystyczny, }},
\end{aligned}
$$

$q_{s}=0,5^{*} \sqrt{19,2=2,2} \mathrm{dm}^{3} / \mathrm{s}$ - przepływ obliczeniowy ścieków sanitarnych

WYKONANIE

Instalacja kanalizacji sanitarnej wykonana będzie z rur PCV niskoszumowych. Odcinki podposadzkowe wykonane będą z rur PCV-U kI. S SDR 34. U nasady pionów należy montować rewizje.
Odpowietrzenie pionu kanalizacyjnego wyprowadzone będzie na dach.
Przewody kanalizacyjne układać kielichami w kierunku przeciwnym do przepływu ścieków.
Minimaina odległość przewodów z PVC lub PP od przewodów cieplnych ma wynosić $0,1 \mathrm{~m}$ mierząc od powierzchni rur.
W przypadku, gdy odległość ta jest mniejsza, należy zastosować izolację termiczną.
Izolację termiczną należy wykonać również wtedy, gdy działanie dowolnego źródła ciepła mogłoby spowodować podwyższenie temperatury ścianki przewodu powyżej $+45^{\circ} \mathrm{C}$,
Przewody kanalizacyjne prowadzić po ścianach albo w bruzdach pod warunkiem zastosowania rozwiązania zapewniającego swobodne wydłużanie przewodów.
Podejścia do przyborów sanitarnych i wpustów podłogowych prowadzić oddzielnie, lub łączyć w kilka przyborów, pod warunkiem utrzymania szczelności zamknięć wodnych.
Spadki podejść wynikają z zastosowanych trójników łączących podejście kanalizacyjne z przewodem spustowym i zasady osiowego montażu przewodów, i mają wynosić minimum 2%, chyba, że na rysunku opisano inaczej
Średnica części odpływowej pionu powinna być jednakowa na całej wysokości i nie powinna być mniejsza od największej średnicy podejścia do tego pionu.
Minimalna średnica pionu prowadzących ścieki z misek ustẹpowych wynosi $0,10 \mathrm{~m}$.
Instalacje wykonać zgodne z zaleceniami norm PN-81/C-10700 PN-EN12056-1, PN-EN12056-2, PN-EN12056-3, PN-EN12056-5.
Przejścia instalacji rurowych przez przegrody budowlane wykonać w rurach osłonowych.
Przejścia instalacji rurowych przez przegrody budowlane stanowiące przegrodę ogniową zabezpieczyć do wymaganej odporności ogniowej.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

* Kategoria obiektu: XVI

2.3.2. Instalacja skroplinowa

Z urządzeń częściowej klimatyzacji projektuje się odprowadzenie skroplin.
Rurociągi skroplin prowadzone będą w systemie grawitacyjnym, a w przypadku konieczności zostaną zastosowane odpowiednie układy pompowe.

WYKONANIE

Instalacja skroplin z urządzeń chłodniczych wykonana zostanie z rur i kształtek PCV łączonych na klej lub z rur PP łączonych zgrzewaniem.
W miejscach włączenia skroplin do pionów sanitarnych wykonać zasyfonowanie wysokości ok. 15 cm wraz z syfonem kulkowym, zabezpieczającym przed przedostawaniem się zapachów.

Przejścia instalacji rurowych przez przegrody budowlane wykonać w rurach osłonowych.
Minimalna odległość przewodów skroplin od przewodów cieplnych ma wynosić $0,1 \mathrm{~m}$ mierząc od powierzchni rur.
W przypadku, gdy odległość ta jest mniejsza, należy zastosować izolację termiczną.
Izolację termiczną należy wykonać również wtedy, gdy działanie dowolnego źródła ciepła mogłoby spowodować podwyższenie temperatury ścianki przewodu powyżej $+45^{\circ} \mathrm{C}$,
Przewody kanalizacyjne prowadzić po ścianach albo w bruzdach pod warunkiem zastosowania rozwiązania

- zapewniającego swobodne wydłużanie przewodów.

Podejścia do urządzeń prowadzić oddzielnie, lub łączyć w kilka przyborów, pod warunkiem utrzymania szczelności zamknięć wodnych.
Spadki podejść wynikają z zastosowanych trójników łączących podejście kanalizacyjne z przewodem spustowym i zasady osiowego montażu przewodów, i mają wynosić minimum 0,5\%.
Przejścia instalacji rurowych przez przegrody budowlane wykonać w rurach osłonowych.

- Przejścia instalacji rurowych przez przegrody budowlane stanowiące przegrodę ogniową zabezpieczyć do wymaganej odporności ogniowej.

2.3.3. Instalacja kanalizacji deszczowej (odwodnienie dachów)

Wody opadowe z powierzchni dachu płaskiego odprowadzane będą za pomocą wpustów dachowych i systemu wewnętrznej grawitacyjnej instalacji kanalizacji deszczowej.

W skład systemu odwodnienia dachu wchodzą podgrzewane elektrycznie wpusty dachowe, poziome przewody odpływowe prowadzone pod stropem oraz pion spustowy prowadzony wewnątrz budynku.

W ścianach attykowych wykonane zostaną otwory przelewów awaryjnych.

WYKONANIE

Kanalizację deszczową wewnątrz budynku projektuje się z rur PE-HD łączonych przez zgrzewanie doczołowe i elektroporowe (podstawową oraz awaryjna).

Rury zaizolować zgodnie z wytycznymi producenta rur.
Odcinki rurociągów kanalizacji deszczowej prowadzone wewnątrz budynku należy izolować przeciwroszeniowo w sposób szczelny.

Na pionach zamontować rewizje kanalizacyjne.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

Szczegóły dotyczące rozwiązań instalacji zostaną zawarte w projekcie wykonawczym.

2.4. INSTALACJE WEWNETRZNE - WENTYLACYJNE

W celu zapewnienia odpowiednich parametrów higienicznych w pomieszczeniach budynku projektuje się bytową wentylację mechaniczną nawiewno - wywiewną. W budynku zaprojektowano cztery centrale wentylacyjne w wykonaniu wewnętrznym.

Bilans powietrza wentylacyjnego:

LNW-1A

Bưdynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI
Bưdynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI
Bưdynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI
-
s
Bìidynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań. Kategoria obiektu: XVI

0	pom. elektryczne	2,51	4,00	10,0	0			20,0	
0	pom. techniczne	2,51	3,30	8,3	0		20,0		
+1	biuro	15,13	2,50	37,8	4	120,0	120,0	3,2	3,2
+1	biuro	14,20	2,50	35,5	4	120,0	120,0	3,4	3,4
+1	biuro	14,20	2,50	35,5	4	120,0	120,0	3,4	3,4
+1	biuro	15,13	2,50	37,8	4	120,0	120,0	3,2	3,2
+1	pom socjalne	4,80	2,50	12,0	0		50,0	0,0	4,2
+1	ksero/magazyn	4,80	2,50	12,0	0		50,0	0,0	4,2
+1	komunikacja	8,00	3,30	26,4	0		150,0		5,7
+1	klatka schodowa	13,50	3,30	44,6	0	0,0			

LWD-1

kondygnacja	pomieszczenie	powierzchnia	wysokość	kubatura	liczba ludzi	nawiew	wywiew	$\begin{gathered} \hline \text { krotność } \\ \mathrm{N} \end{gathered}$	krotność w
[-]	[nazwa]	[m2]	[m]	[m3]	[ilość]	[m3/h]	[m3/h]	[1/h]	[1/h]
-1	sanitariaty	28,9	2,50	72,3	0		360,0	0,0	5,0
+1	sanitariaty	4,70	2,50	11,8	0		50,0	0,0	4,3

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

2.4.1. Wentylacja mechaniczna nawiewno-wywiewna

linia LNW-1A i LNW-1B

Dla pomieszczenia sali konferencyjnej (z możliwością podziału na dwie mniejsze) na parterze projektuje się dwa układy wentylacyjne wyposażone w centrale wentylacyjne nawiewno - wywiewne w wykonaniu wewnętrznym o wydajności (każda):

- nawiew/wywiew - Vnaw/wyw =2300 / 2240 [m3/h], dpnaw/wyw=300/300Pa

Centrale będą dostarczać powietrze świeże oraz stabilizować temperaturę w obu salach konferencyjnych niezależnie.

Centrale umieszczone będą w piwnicy - pomieszczenie techniczne.

Każda centrala wyposażona jest w następujące bloki funkcjonalne:
na nawiewie:

- blok przepustnicy z siłownikiem,
- blok filtracji powietrza świeżego
- blok wymiennika rotacyjnego,
- blok wentylatora nawiewnego z regulacja obrotów,
- blok chłodnico-nagrzewnicy freonowej,
- blok rezerwowej nagrzewnicy elektrycznej,
- tłumik,
na wywiewie:
- tłumik,
- blok przepustnicy z siłownikiem,
- blok filtracji powietrza świeżego,
- blok wymiennika rotacyjnego,
- blok wentylatora nawiewnego z regulacją obrotów,

Parametry centrali LNW-1A i LNW-1B:

- $\mathrm{Vn} / \mathrm{Vw}=2300 / 2240 \mathrm{~m} 3 / \mathrm{h}$
- dpn / dpw $=300 / 300 \mathrm{~Pa}$
- Qch $=9,5 \mathrm{~kW}$
- $\mathrm{Qg}=5,5 \mathrm{~kW}$
- Ne_nagrzewnica $=3,0 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
- Ne_wentylatory $=1,6 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
- Wymiary (dł. x szer. x wys.) $=1600 \times 1050 \times 1285 \mathrm{~mm}$
- $m=398 \mathrm{~kg}$

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

linia LNW-2

Dla pomieszczenia sali pomocniczej w piwnicy projektuje się układ wentylacyjny wyposażony w centralę wentylacyjna nawiewno - wywiewną w wykonaniu wewnętrznym o wydajności:

- nawiew/wywiew - Vnaw/wyw =2000 / 1950 [m3/h], dpnaw/wyw=300/300Pa

Centrala będzie dostarczać powietrze świeże oraz stabilizować temperaturę w sali.
Centrala umieszczona będzie w piwnicy - pomieszczenie techniczne.

Centrala wyposażona jest w następujące bloki funkcjonalne:
na nawiewie:

- blok przepustnicy z siłownikiem,
- blok filtracji powietrza świeżego,
- blok wymiennika rotacyjnego,
- blok wentylatora nawiewnego z regulacją obrotów,
- blok chłodnico-nagrzewnicy freonowej,
- blok rezerwowej nagrzewnicy elektrycznej,
- tłumik,
na wywiewie:
- tłumik,
- blok przepustnicy z siłownikiem,
- blok filtracji powietrza świeżego,
- blok wymiennika rotacyjnego,
- blok wentylatora nawiewnego z regulacją obrotów,

Parametry centrali LNW-2:

- $\mathrm{Vn} / \mathrm{Vw}=2000 / 1950 \mathrm{~m} 3 / \mathrm{h}$
- $\mathrm{dpn} / \mathrm{dpw}=300 / 300 \mathrm{~Pa}$
- Qch $=9,0 \mathrm{~kW}$
- $\mathrm{Qg}=5,0 \mathrm{~kW}$
- Ne_nagrzewnica $=4,5 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
- Ne_wentylatory $=1,6 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
- Wymiary (dł. x szer. x wys.) $=1500 \times 850 \times 1120 \mathrm{~mm}$
- $m=307 \mathrm{~kg}$

3

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

linia LNW-3

Centrala wentylacyjna będzie dostarczać powietrze świeże do pomieszczeń tj. pom. biurowe, aneks kuchenny, pom. ksero, komunikacja zlokalizowanych w piwnicy, na parterze oraz na piętrze .
Stabilizacja temperatury powietrza odbywać się będzie na nawiewie zarówno w okresie letnim i zimowym.
Centrala umieszczona w przestrzeni sufitu podwieszanego na piętrze - pomieszczenie ksero.

Instalacja wyposażona w podwieszaną centralę wentylacyjną nawiewno - wywiewną w wykonaniu wewnętrznym o wydajności:

- nawiew/wywiew - Vnaw/wyw $=1200 / 950[\mathrm{~m} 3 / \mathrm{h}]$, dpnaw/wyw=200/300Pa

Centrala wyposażona jest w następujące bloki funkcjonalne:
na nawiewie:

- blok przepustnicy z siłownikiem,
- blok filtracji powietrza świeżego
- blok wymiennika rotacyjnego,
- blok wentylatora nawiewnego z regulacja obrotów,
- blok chłodnico-nagrzewnicy freonowej,
- blok rezerwowej nagrzewnicy elektrycznej,
- tłumik,
- tłumik,
- blok przepustnicy z siłownikiem,
- blok filtracji powietrza świeżego,
- blok wymiennika rotacyjnego,
- blok wentylatora nawiewnego z regulacją obrotów,

Parametry centrali LNW-3:

- $\mathrm{Vn} / \mathrm{Vw}=1200 / 950 \mathrm{~m} 3 / \mathrm{h}$
- dpn / dpw $=200 / 300 \mathrm{~Pa}$
- Qch $=4,0 \mathrm{~kW}$
- $\mathrm{Qg}=5,0 \mathrm{~kW}$
- Ne_nagrzewnica $=6,0 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
- Ne_wentylatory $=1,6 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
- Wymiary (dł. x szer. x wys.) $=2308 \times 1170 \times 560 \mathrm{~mm}$
- $m=364 \mathrm{~kg}$

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

2.4.2. Wentylacja mechaniczna wywiewna

linia LWD-1

W celu spełnienia wymagań higieniczno - sanitarnych w węzłach sanitarnych projektuje się instalację wentylacji mechanicznej wywiewnej - linia LWD-1.

Linia LWD-1 zakończona będzie wentylatorem dachowym.
Kompensację powietrza zaprojektowano poprzez kratki transferowe w drzwiach.

Dane techniczne wentylatora:

- $\mathrm{Vw}=410 \mathrm{~m} 3 / \mathrm{h}$
- $\mathrm{dpw}=200 \mathrm{~Pa}$
- $\mathrm{Ne}=0,2 \mathrm{~kW}(1 \times 230 \mathrm{~V})$

WYKONANIE INSTALACJI WENTYLACYJNEJ

Kanały wentylacyjne wykonane będą z blachy ocynkowanej, izolowanej termicznie wełną mineralną z folią aluminiową - na nawiewie, wywiewie, czerpni i wyrzucie do / z central wentylacyjnych, dla niezależnych linii wywiewnych kanały będą izolowane w razie konieczności.
Ze względów akustycznych kanały wentylacyjne czerpni i wyrzutni central LNW-1A, LNW-1B, LNW-2 należy wykonać jako kanały akustyczne z płyt z wełny mineralnej 40 mm .
Ze względów akustycznych kanały wentylacyjne prowadzone w sali konferencyjnej należy wykonać jako kanały akustyczne z płyt z wełny mineralnej 40 mm .
Kanały nawiewne i wywiewne do i z central wentylacyjnych na kondygnacjach izolować termicznie - 4cm wełny mineralnej w osłonie z folii aluminiowej.
Kanały powietrza czerpanego i wyrzutowego należy izolować 8 cm wełny mineralnej w osłonie z folii aluminiowej.
Izolację kanałów czerpnych i wyrzutowych prowadzonych we wnękach ściany wykonać z pianki PIR/PUR o wspótczynniku lambda $=$ max. $0,022 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
d Kategoria obiektu: XVI
Obliczenie wymaganego współczynnika lambda dla izolacji czerpni/wyrzutni w ścianie

Materialem spełniającym ww wymagania współczynnika przewodzenia ciepła lambda jest np.. poliuretan PIR / PUR
Przejścia instalacyjne przez przegrody wydzielenia ogniowego zabezpieczyć ppoż. do odporności El120.
Elementy instalacji, które nie są fabrycznie zabezpieczone przed korozją należy zabezpieczyć zgodnie z ITB 400/2010 (kanały wentylacyjne z blachy stalowej ocynkowanej wykonane zgodnie z BN-70/8865-04 oraz BN-70/886505 nie wymagaja dodatkowych zabezpieczeń).
Wszystkie przejścia przez przegrody ogniowe zabezpieczyć do wymaganej odporności ogniowej
Elastyczne kanały powietrzne dla końcowych odcinków (np. podłączeń nawiewników) wykonać z giętkich przewodów izolowanych termicznie z izolacją akustyczną, max długość przewodów giętkich 1,5m.
Przyłącza elementów nawiewṇych oraz wywiewnych wykonać jako nasuwane z opaskami zaciskowymi.
Przy przejściach kanałów wentylacyjnych przez przegrody budowlane wykonać otwory większe o $5 \mathrm{~cm} z$ każdej strony od wymiaru kanału.
Podczas montażu instalacji wentylacyjnej należy pamiętać o wykonaniu odpowiednich otworów rewizyjnych lub zamontować elementy w sposób umożliwiający łatwy demontaż fragmentów instalacji dla okresowego czyszczenia przewodów wentylacyjnych - maksymalna odległość między łatwodemontowalnymi odcinkami kanałów winna wynosić 10 m , w przypadku przewodów typu Spiro łatwy demontaż zrealizować w postaci odcinka długości 50 cm obustronnnie łączonego za pomocą kołnierzy, w przypadkach, gdy demontaż instalacji jest niemożliwy montować otwory rewizyjne, do których jest łatwy dostęp.
Rozkład elementów nawiewnych i wywiewnych dostosować do układu sufitów podwieszanych.

2.4.3. Sterowanie i automatyka systemów wentylacyjnych

Zaprojektowane elementy instalacyjne wymagające zastosowania układów automatycznej regulacji, automatyki oraz sterowania (również w powiązaniu z innymi układami instalacyjnymi projektowanego budynku) należy każdorazowo wyposażyć w niezbędne układy pozwalające na poprawną pracę poszczególnych urządzeń oraz instalacji.
Wszystkie układy sterowania oraz automatycznej regulacji w zakresie instalacji objętych niniejszym projektem są objęte zakresem dostaw i wykonania wraz z uruchomieniem.
3. Szczegółowe wytyczne do automatyki i sterowania zawarte zostaną na etapie projektu wykonawczego

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

2.5. INSTALACJE WEWNĘTRZNE - INSTALACJA FREONOWA

2.5.1. Instalacja freonowa klimatyzatorów

Pomieszczenia biurowe

Żródłem chłodu dla pomieszczeń biurowych będą dwa układ klimatyzacji typu multisplit.
W każdym z czterech pomieszczeń biurowych zlokalizowano jedną jednostkę wewnętrzną kasetonową.
Agregaty zewnętrzne zlokalizowane będą na dachu.
Agregaty zewnętrzne należy wyposażyć w nakładki kierunkowe powietrza.
Dane techniczne:
$2 \times$ układ multisplit:

- $1 \times$ jednostka zewnętrzna

Qch $=5,2 \mathrm{~kW}$
$\mathrm{Ne}=1,6 \mathrm{~kW}(1 \times 230 \mathrm{~V})$
Wymiary: (dł. x szer. x wys.) $=800 \times 285 \times 550 \mathrm{~mm}$
$\mathrm{m}=37 \mathrm{~kg}$

- $2 \times$ jednostka wewnętrzna

Qch $=2,6 \mathrm{~kW}$
$\mathrm{Ne}=0,1 \mathrm{~kW}(1 \times 230 \mathrm{~V})$
UWAGA:
Maksymalna wysokość jednostki zewnętrznej wynosi 630 mm .

Hol wejściowy

W pomieszczeniu holu wejściowego zlokalizowano jedną jednostkę wewnętrzną stojącą zabudowaną kratą maskującą. Dla pomieszczenia projektuje się układ klimatyzacji typu split. Jednostka zewnętrzna zlokalizowana będzie na dachu. Agregat zewnętrzny należy wyposażyć w nakładki kierunkowe powietrza.

Dane techniczne :
$1 \times$ układ split:

- $1 \times$ jednostka zewnętrzna

Qch $=3,5 \mathrm{~kW}$
$\mathrm{Ne}=1,0 \mathrm{~kW}(1 \times 230 \mathrm{~V})$
Wymiary: (dł. x szer. x wys. $)=800 \times 285 \times 550 \mathrm{~mm}$
$\mathrm{m}=37 \mathrm{~kg}$

- $1 \times$ jednostka wewnętrzna

Qch $=3,5 \mathrm{~kW}$
$\mathrm{Ne}=0,1 \mathrm{~kW}(1 \times 230 \mathrm{~V})$
UWAGA:
Maksymalna wysokość jednostki zewnętrznej wynosi 630 mm .

2.5.2. Instalacja freonowa central wentylacyjnych

Sekcja chłodnico-nagrzewnicy centrali LNW-1A

Źródłem chłodu / grzania dla sekcji chłodnico-nagrzewnicy centrali wentylacyjnej LNW-1A będzie agregat zewnętrzny freonowy. Jednostka zewnętrzna zlokalizowana będzie na patio w projektowanej wnęce istniejącego murku wg rysunku.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
a Kategoria obiektu: XVI

Dane techniczne:
Qch $=9,5 \mathrm{~kW}$
$\mathrm{Qg}=5,5 \mathrm{~kW}$
$\mathrm{Ne}=3,3 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
Wymiary (dł. x szer. x wys.) $=950 \times 360 \times 945 \mathrm{~mm}$
$\mathrm{m}=75 \mathrm{~kg}$

Sekcja chłodnico-nagrzewnicy centrali LNW-1B

Źródłem chłodu / grzania dla sekcji chłodnico-nagrzewnicy centrali wentylacyjnej LNW-1B będzie agregat zewnętrzny freonowy. Jednostka zewnętrzna zlokalizowana będzie na patio w projektowanej wnęce istniejącego murku wg rysunku.

Dane techniczne:
Qch $=9,5 \mathrm{~kW}$
Qg=5,5kW
$\mathrm{Ne}=3,3 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
Wymiary (dł. x szer. x wys.) $=950 \times 360 \times 945 \mathrm{~mm}$
$\mathrm{m}=75 \mathrm{~kg}$

Sekcja chłodnico-nagrzewnicy centrali LNW-2

Źródłem chłodu / grzania dla sekcji chłodnico-nagrzewnicy centrali wentylacyjnej LNW-2 będzie agregat zewnętrzny freonowy. Jednostka zewnętrzna zlokalizowana będzie na patio w projektowanej wnęce istniejącego murku wg rysunku.

Dane techniczne:
Qch $=9,0 \mathrm{~kW}$
$\mathrm{Qg}=5,0 \mathrm{~kW}$
$\mathrm{Ne}=3,3 \mathrm{~kW}(3 \times 400 \mathrm{~V})$
Wymiary (dł. x szer. x wys.) $=950 \times 360 \times 945 \mathrm{~mm}$
$\mathrm{m}=75 \mathrm{~kg}$

Sekcja chłodnico-nagrzewnicy centrali LNW-3

Żródłem chłodu / grzania dla sekcji chłodnico-nagrzewnicy centrali wentylacyjnej LNW-3 będzie agregat zewnętrzny freonowy zlokalizowany na dachu. Agregat zewnętrzny należy wyposażyć w nakładkę kierunkową powietrza.

Dane techniczne:
Qch $=2,0 \mathrm{~kW}$
$\mathrm{Qg}=2,5 \mathrm{~kW}$
$\mathrm{Ne}=1,6 \mathrm{~kW}(1 \times 230 \mathrm{~V})$
Wymiary (dł. x szer. x wys.) $=809 \times 300 \times 630 \mathrm{~mm}$
$\mathrm{m}=46 \mathrm{~kg}$

UWAGA:
Maksymalna wysokość jednostki zewnętrznej wynosi 630 mm .
Z uwagi na dopuszczalną wysokość agregatów umieszczonych na dachu (630 mm) agregat zewnętrzny dla centrali LNW-3 należy wyposażyć w grzałkę elektryczną.
W trybie chłodzenia wystarczająca będzie praca agregatu, natomiast w trybie grzania (w warunkach obliczeniowych) załączać się będzie grzałka elektryczna.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
A. Kategoria obiektu: XVI
$\mathrm{Qg}=1,6 \mathrm{~kW}$
$\mathrm{Ne}=1,6 \mathrm{~kW}(1 \times 230 \mathrm{~V})$
WYKONANIE
Systemy freonowe w dostawie z kompletnym układem automatycznej regulacji i sterowania.
Między jednostką zewnętrzną, a wewnętrzną należy wykonać instalację freonową z rur miedzianych przeznaczonych do zastosowania w obiegu czynnika chłodniczego.

Z jednostek wewnętrznych należy odprowadzić skropliny do najbliższego pionu kanalizacji sanitarnej (wpięcie przez syfon z zamknięciem kulkowym), lub wpiąć przed syfon najbliższej umywalki.
Miedzy jednostką zewnętrzną i wewnętrzną należy wykonać instalację freonową z rur miedzianych przeznaczonych do zastosowanego w obiegu czynnika chłodniczego. Łączenie rur lutem twardym.

Piony wykonać z rur miedzianych sztywnych.
Średnice rurociągów gazowego i cieczowego wg. wytycznych wybranego producenta.
Na wszystkich odcinkach instalacji wykonać trzystopniową próbę ciśnieniową na N2 wg wymagań producenta.
Próżnię w instalacji wykonać dwustopniowo.
Napełnienie instalacji czynnikiem chłodniczym wykonać wg wskazówek zawartych w instrukcji montażowej systemu.
Instalacje freonowe po wykonaniu prób ciśnieniowych izolować termicznie otulinami chloro-kauczukowymi.
Obejmy z izolacją mostków wykonać w technologii wybranego producenta,
Odcinki prowadzone na zewnątrz budynku należy zabezpieczyć przed wpływem czynników zewnętrznych (np. osłona z blachy ocynkowanej).
Mocowanie pionów instalacyjnych wykonać za pomocą uchwytów zgodnie z wymaganiami danego producenta systemu mocowania oraz średnicy i materiału rurociągu - minimum co 1 kondygnację.
Poziomy instalacyjne mocować za pomocą uchwytów systemowych i wsporników zgodnie z wymaganiami danego producenta systemu mocowania oraz średnicy i materiału
Przejścia instalacji rurowych przez przegrody budowlane stanowiące przegrodę ogniową zabezpieczyć do wymaganej odporności.
Na każdym odcinku o długości 10 metrów wykonać kompensację wydłużeń za pomocą kolan, w środkach odcinków prostych oraz w środkach długości kompensatorów, instalować punkty stałe wykonane za pomocą obejm zaciskowych bezpośrednio na rurociągu.
Ciśnienie próby wykonać wg wytycznych producenta urządzeń.

2.6. INSTALACJE WEWNĘTRZNE - INSTALACJA OGRZEWCZA

2.6.1. Instalacja ogrzewcza grzejnikowa

Dla projektowanych pomieszczeń określono projektową temperaturę wewnętrzną oraz zapotrzebowanie na ciepło na cele ogrzewania.

Zaprojektowano instalację pompową w układzie dwururowym, o parametrach czynnika grzewczego $70 / 50^{\circ} \mathrm{C}$. Zaprojektowano instalację ogrzewczą w systemie rozdzielaczowym.

Moc grzewcza układu Qc.o. $=23 \mathrm{~kW}$.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań
A Kategoria obiektu: XVI

Z węzła cieplnego woda grzewcza będzie doprowadzona do rozdzielacza umieszczonego w pom. technicznym w piwnicy (przepływ w obiegu wymuszany będzie istniejącą pompą obiegową w węźle cieplnym). Na rozdzielaczu projektuje się pompę obiegową - dla instalacji w nowym budynku. Pod stropem piwnicy projektuje się rozprowadzenie główną siecią rozdzielczą - do poszczególnych pionów c.o. i dalej do szafek z rozdzielaczami na poszczególnych kondygnacjach.

W obrębie ogrzewanych pomieszczeń obiektu jako odbiorniki ciepła projektuje się:

- grzejniki kanałowe w posadzce
- grzejniki dekoracyjne
- grzejniki płytowe konwektorowe płaskie (typu „plan") wiszące

Grzejniki przy oknach lub fasadach przeszklonych zlokalizowane w holu wejściowym, sali konferencyjnej oraz korytarzu na piętrze zaprojektowano jako grzejniki kanałowe w posadzce (oznaczenie na rysunku 'GK').

Grzejniki zlokalizowane na klatkach schodowych oraz pomieszczeniach sanitarnych zaprojektowano jako grzejniki dekoracyjne (oznaczenie na rysunku 'GD').

W pozostałych pomieszczeniach projektuje się grzejniki płytowe konwektorowe płaskie (typu "plan") - oznaczenie na rysunku 'G'

Obieg centralnego ogrzewania należy zabezpieczyć przed wzrostem ciśnienia za pomocą naczynia wzbiorczego oraz * zaworu bezpieczeństwa. Szczegółowe obliczenia na etapie projektu wykonawczego.

Parametry pompy obiegowej c.o.:
$\mathrm{Q}=1,0 \mathrm{~m} 3 / \mathrm{h}$
$\mathrm{H}=2,6 \mathrm{mH} 2 \mathrm{O}$
$\mathrm{Ne}=0,25 \mathrm{~kW}(1 \times 230 \mathrm{~V})$

WYKONANIE

Główne rurociagi obiegu c.o. zasilania szafek rozdzielaczy wykonać z rur stalowych w systemie zaciskowym izolowanych termicznie..
Instalację c.o. od szafek do poszczególnych grzejników prowadzoną w warstwach posadzki projektuje się w wykonaniu z rur wielowarstwowych z polietylenu sieciowanego PE-XC (lub innych w podobnym standardzie) izolowanych termicznie.

Zawiesia i podpory rurociągów wykonać zgodnie z katalogiem KER (np. KER 75/8.91 + pręt gwintowany, KER 75/8.91+KER 75/8.61), lub mocować za pomocą uchwytów systemowych i wsporników wg wymagań producenta systemu w odległościach wynikających ze średnicy rurociągu.
Rurociągi grzewcze izolować termicznie. Grubość izolacji zgodnie z DU 75 poz. 690 z 2002 wraz z poprawkami, izolacja łączona w sposób szczelny (klejenie).
Przewody prowadzić w taki sposób, aby umożliwić samokompensację przewodów.
Obejmy z izolacją mostków wykonać w technologii wybranego producenta.
Przejścia instalacji rurowych przez przegrody budowlane wykonać w rurach osłonowych.
Rurociagi zabezpieczone antykorozyjnie powłoką lakierniczą.
Wykonać zabezpieczenie antykorozyjne i zawiesi w zakresie zgodnym z kartą zabezpieczenia antykorozyjnego - wg instrukcji ITB 400/2010.
Przejścia instalacji rurowych przez przegrody budowlane stanowiące przegrodę ogniową zabezpieczyć do wymaganej odporności

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

- Kategoria obiektu: XVI

Ułożenie przewodów rozdzielczych należy wykonać ze spadkiem 0,3\% w kierunku odwodnień.
W celu odpowietrzenia instalacji należy stosować odpowietrzniki automatyczne.
W celu odwodnienia instalacji projektuje się zawory odcinające z możliwością spustu.
Instalacja wody grzewczej napełniona będzie wodą sieciową z miejskiej sieci cieplnej.
Wykonanie instalacji - PN6.
Próba wodna - nadciśnienie 0,9 MPa.

Szczegółowy dobór grzejników i armatury zostanie wykonany na etapie projektu wykonawczego.

2.7. ZABEZPIECZENIA PRZECIWPOŻAROWE

Przepusty instalacyjne w ścianach lub stropach pomiędzy oddzielnymi strefami wykonać poprzez zastosowanie:

- dla przewodów z tworzyw sztucznych: opasek ogniochronnych lub mas pęczniejących o klasie odporności ogniowej min. El 60 dla przegród El60, dla przegród El120 zabezpieczenia przejść instalacyjnych w klasie El120,
- dla przewodów stalowych: zapraw ogniochronnych uzupełnionych powłoką masy ogniochronnej o klasie odporności ogniowej min. El 60 dla przegród El60, dla przegród El120 zabezpieczenia przejść instalacyjnych w klasie El120

W miejscach przejść przewodów przez ściany i stropy nie wolno wykonywać żadnych połączeń rur. Jeżeli w miejscach tych są założone tuleje, wolną przestrzeń między zewnętrzną ścianką rury i wewnętrzną tulei należy całkowicie wypełnić odpowiednią masą plastyczną. Przestrzenie między zewnętrzną ścianką tulei, a ścianą wypełnić masą nieplastyczną.
Przejścia kanałów wentylacyjnych przez przegrody wydzielenia ogniowego zabezpieczyć do wymaganej odporności ogniowej klapami ppoż posiadającymi atest do montażu dla warunków montażu według projektu (np. poza przegrodą). Klapy przeciwpożarowe odcinające normalnie otwarte.
W przypadku zabudowy klapy ppoż. poza przegrodą, odcinek kanału do ściany należy zabezpieczyć pożarowo w klasie pożarowej przegrody w której zamontowana jest klapa pożarowa.

STANDARD STEROWANIA KLAP POŻAROWYCH DLA INSTALACJI WENTYLACJI BYTOWEJ

Klapy wyposażone będą w:

- topik
- wskaźniki krańcowe zamknięcie / otwarcie
- siłownik (230V AC lub 24V DC)
+ moduł zasilająco-sterujący - sterowanie przerwą (lub inny równoważny),
W przypadku wykrycia pożaru centrale wentylacyjne oraz wentylatory linii wywiewnych obsługujące strefę objętą pożarem zostają wyłączone, zamknięte zostają klapy ppoż.

2.8. OCHRONA PRZED HALASEM I DRGANIAMI

Mocowanie i posadowienie urządzeń wywołujących drgania (np. centrale wentylacyjne, agregaty chłodnicze, pompy obiegowe itp.) do konstrukcji budynku wykonać w sposób zabezpieczajacy przed powstawaniem i rozchodzeniem się drgań i hałasu w obiekcie. Przy mocowaniu lub posadowieniu stosować przekładki gumowe lub wibroizolacyjne. Połączenia central wentylacyjnych, pomp obiegowych z instalacjami wykonać poprzez złącza wibroizolacyjne.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

Wykonać odpowiednie zabezpieczenia akustyczne - np. łłumiki akustyczne, zabudowę akustyczną.

2.9. WYTYCZNE BRANŻOWE

2.9.1. BRANŻA ARCHITEKTONICZNO-KONSTRUKCYJNA

- Elementy konstrukcyjne obiektu przystosować do montażu elementów technologicznych układu wentylacji i częściowej klimatyzacji.
- W miejscach przejść instalacji przez elementy konstrukcyjne budynku wykonać otwory montażowe o wymiarach odpowiednio większych od wymiaru (min. 5 cm . na stronę).
- Drzwi wewnętrzne przewidywane do migracji powietrza należy wyposażyć w kratkę wentylacyjną o polu wolnego przekroju $A 0=0,04 \mathrm{~m} 2$ lub zamontować powyżej poziomu posadzki ze szczeliną $A 0=0,04 \mathrm{~m} 2$.
- Pod urządzeniami o dużej masie wykonać ramy pozwalające na zachowanie dopuszczalnych przez konstrukcję budynku nośności stropu. Posadowienie urządzeń należy wykonać w sposób uniemożliwiającym przenoszenie drgań i hałasu na konstrukcję budynku (wibroizolatory).
- Należy przewidzieć możliwość dojścia do wszystkich elementów regulacyjnych instalacji wentylacyjnej, chłodniczej, ogrzewczej i wodno-kanalizacyjnej.
- Przy urządzeniach z elementami wymagającymi regulacji lub konserwacji (np. klapy przeciwpożarowe, przepustnice regulacyjne, zawory regulacyjne itd.) wykonać otwory rewizyjne w stropach podwieszanych i obudowach instalacji.
- Wykonać odwodnienie posadzki w maszynowni wentylacyjnej.
- Uszczelnić wszystkie wyjścia przez obudowę budynku (czerpnie, wyrzutnie).

2.9.2. BRANŻA ELEKTRYCZNA

Wykonać instalację zasilania odbiorników systemu wentylacji, klimatyzacji, grzewczego oraz wod-kan w energię elektryczną.
Moce sumaryczne zgodnie tabelą bilansową - tablica 1.1.
Podłączenia elektryczne wykonać wg wytycznych producentów.
Elementy instalacji, urządzenia oraz kanały wentylacyjne zlokalizowane na zewnątrz budynku zabezpieczyć przed prądami błądzącymi.

2.9.3. WYTYCZNE AKPiA.

Wszystkie elementy instalacyjne wymagające zastosowania układów automatycznej regulacji, automatyki oraz sterowania (również w powiązaniu z innymi układami instalacyjnymi projektowanego budynku) należy każdorazowo wyposażyć w niezbędne układy pozwalające na poprawną pracę poszczególnych urządzeń oraz instalacji zgodnych ze standardem obiektu.
Wszystkie układy sterowania oraz automatycznej regulacji w zakresie instalacji objętych niniejszym projektem należy objąć zakresem dostaw i wykonania wraz z uruchomieniem.
Projektowane centrale wentylacyjne oraz układy grzewczo-chłodzące podłączyć do centralnego systemu monitorowania i zarządzania, jeżeli taki będzie zastosowany na obiekcie.

3. WYMAGANIA DOTYCZACE WYKONANIA

Wszystkie zastosowane elementy instalacji muszą posiadać dopuszczenie do stosowania w budynkach użyteczności publicznej.
Wszystkie instalacje należy wykonać zgodnie z aktualnym stanem prawnym a w szczególności uwzględniając aktualne przepisy Prawa Budowlanego, bhp i p-poż oraz obowiązujące przepisy i wytyczne dotyczące

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
\& Kategoria obiektu: XVI
projektowania, a w szczególności Rozporzadzenie Ministra Infrastruktury z dnia 12.04 .2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. Nr 75 poz. 690 z 12.04.2002 wraz z późniejszymi zmianami).

Wszystkie instalacje należy wykonać według wytycznych COBTRI Instal:
Wymagania Techniczne COBRTI INSTAL Zeszyt 1. - Zabezpieczenie wody przed wtórnym zanieczyszczeniem Wymagania Techniczne COBRTI INSTAL Zeszyt 3. - Warunki Techniczne wykonania i odbioru sieci wodociągowych Wymagania Techniczne COBRTI INSTAL Zeszyt 5. - Warunki Techniczne wykonania i odbioru instalacji wentylacyjnych Wymagania Techniczne COBRTI INSTAL Zeszyt 6. - Warunki Techniczne wykonania i odbioru instalacji ogrzewczych Wymagania Techniczne COBRTI INSTAL Zeszyt 7. - Warunki Techniczne wykonania i odbioru instalacji wodociągowych Wymagania Techniczne COBRTI INSTAL Zeszyt 8. - Warunki Techniczne wykonania i odbioru węzłów ciepłowniczych Wymagania Techniczne COBRTI INSTAL Zeszyt 12. - Warunki Techniczne wykonania i odbioru instalacji kanalizacyjnych.

4. ZESTAWIENIE NORM I PRZEPISÓW

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
Kategoria obiektu: XVI

	PN-EN ISO 21003-5:2009	Systemy przewodów rurowych z rur wielowarstwowych do instalacji wody cieplej i zimnej wewnątrz budynków - Część 5: Przydatność systemu do stosowania
	PN-EN 10312:2006	Rury ze szwem ze stali odpornej na korozję do transportu wody i innych płynów wodnych - Warunki techniczne dostawy
	PN-EN 806-1:2004	Wymagania dotyczące wewnẹtrznych instalacji wodociagowych do przesylu wody przeznaczonej do spożycia przez ludzi - Część 1: Postanowienia ogólne
	PN-EN 806-2:2005	Wymagania dotyczące wewnętrznych instalacji wodociagowych do przesyłu wody przeznaczonej do spożycia przez ludzi - Część 2 : Projektowanie
	PN-EN 806-3:2006	Wymagania dotyczące wewnętrznych instalacji wodociagowych do przesylu wody przeznaczonej do spożycia przez ludzi - Część 3: Wymiarowanie przewodów - Metody uproszczone
	PN-EN 806-4:2010	Wymagania dotyczące wewnẹtrznych instalacji wodociagowych do przesyłu wody przeznaczonej do spożycia przez ludzi - Część 4: Instalacja
	PN-EN 1329-1:2001	Systemy przewodowe z tworzw sztucznych do odprowadzania nieczystości i ścieków (o niskiej i wysokiej temperaturze) wewnątrz konstrukcji budowli. Niezmiękczony poli(chlorek winylu) (PVC-U) Część 1: Wymagania dotyczące rur, kształtek i systemu
*	PN-EN 1451-1:2001	Systemy przewodowe z tworzyw sztucznych do odprowadzania nieczystości i ścieków (o niskiej i wysokiej temperaturze) wewnątrz konstrukcji budowli. Polipropylen (PP) - Część 1: Wymagania dotyczace rur, ksztattek i systemu
	PN-EN 12380:2005	Zawory napowietrzajace do systemów kanalizacyjnych - Wymagania, metody badań i ocena zgodności
	PN-EN 1401-1:2009	Systemy przewodów rurowych z tworzyw sztucznych do podziemnego bezciśnieniowego. Część 1: Specyfikacje rur, kształteki systemu
*	PN-EN 12050-1:2002	Przepompownie ścieków w budynkach i ich otoczeniu. Zasady budowy i badania. Część 1: Przepompownie ścieków zawierających fekalia.
	PN-EN 12050-2:2002	Przepompownie ścieków w budynkach i ich otoczeniu. Zasady budowy i badania. Część 2: Przepompownie ścieków bez fekaliów.
	PN-EN 12056-1:2002	Systemy kanalizacji grawitacyjnej wewnątrz budynków. Częsćć1: Postanowienia ogólne i wymagania.
	PN-EN 12056-2:2002	Systemy kanalizacji grawitacyjnej wewnątrz budynków. Część2: Kanalizacja sanitarna, projektowanie ukladu i obliczenia.
	PN-EN 12056-4:2002	Systemy kanalizacji grawitacyjnej wewnatrz budynków. Część4: „Pompownie ścieków - Projektowanie ukladu i obliczenia.
	PN-EN 12056-5:2002	Systemy kanalizacji grawitacyinej wewnątrz budynków. Czȩ̣́ć5: Montaż badania, instrukcje dzialania, użytkowania i eksploatacji.
	PN-EN 671-1:2002	Stałe urządzenia gaśnicze - Hydranty wewnętrzne. Część 1: Hydranty wewnẹtrzne z wężem półsztywnym.
	PN-EN 671-2:2002	Stałe urządzenia gaśnicze - Hydranty wewnętrzne. Część 2: Hydranty wewnętrzne z wężem płasko składanym.
	PN-EN 671-2:2002 /A1:2005	Stałe urządzenia gaśnicze - Hydranty wewnẹtrzne. Część 2: Hydranty wewnętrzne z węzem plasko składanym.
	PN-EN 671-3:2009	Stałe urządzenia gaśnicze - Hydranty wewnętrzne. Część 3: Konserwacja hydrantów wewnętrznych z wężem pósztywnym i hydrantőw wewnẹtrznych z węzem płasko składanym.

	WYBRANE NORMY POLSKIE I MIEDZYNARODOWE	
I.p.	Nr normy	
	PN-EN 1333:1998	Elementy rurociagów. Definicja i dobór PN.
	PN-EN 10242:1999+AL:2002	Gwintowane łączniki rurowe z żeliwa ciaggliwego.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

Δ

Kategoria obiektu: XVI

	PN-EN 1057:1999	Miedź i stopy miedzi. Rury miedziane okraggle bez szwu do wody i gazu stosowane w instalacjach sanitarnych i ogrzewania.
	PN-EN 1254-1:2002(U)	Miedź i stopy miedzi. Łączniki instalacyjne. Część I: Łączniki do rur miedzianych z końcówkami do kapilarnego lutowania miękkiego i twardego.
	PN-EN 1254-2:2002(U)	Miedź i stopy miedzi. Łączniki instalacyjne. Część 2: Łączniki do rur miedzianych z końcówkami do zaciskania.
	PN-EN 1254-3:2002(U)	Miedź i stopy miedzi. Łączniki instalacyjne. Część 3: Łączniki do rur z tworzyw sztucznych z końcówkami do zaciskania.
	PN-EN 1254-4:2002(U)	Miedź i stopy miedzi. Łączniki instalacyjne. Część 4: Łączniki z końcówkami innymi niż do połączeń kapilarnych i zaciskowych.
	PN-EN 1254-5:2002(U)	Miedź i stopy miedzi. Łączniki instalacyjne. Część 5: Łączniki do rur miedzianych z krótkimi końcówkami do kapilarnego lutowania twardego.
	PN-EN 215-1:2002	Termostatyczne zawory grzejnikowe. Wymagania i badania.
	PN-EN 442-1:1999	Grzejniki. Wymagania i warunki techniczne.
	PN-EN 442-2:1999	Grzejniki. Moc cieplna i metody badań.
	PN-EN 442-2:1999/A	I :2002-Grzejniki. Moc cieplna i metody badań.
	PN-EN 442-3:2001	Grzejniki. Ocena zgodności.
	PN-IS06761:1996	Rury stalowe. Przegotowanie końców rur i ksztattek do spawania.
	PN-ISO 228-1:1999-5	Gwinty rurowe połączeń ze szczelnością nic uzyskiwaną na gwincie. Wymiary, tolerancje i oznaczenia.
	PN-ISO 7005-1:2002	Kołnierze metalowe. Część 1: Kołnierze stalowe
	PN-ISO 7-1:1995	Gwinty rurowe polączeń ze szczelnością uzyskiwaną na gwincie. Wymiary, tolerancje i oznaczenia.
	PN-EN ISO 6946:2008	Komponenty budowlane i elementy budynku - Opór cieplny i współczynnik przenikania ciepła - Metoda obliczania
	PN-EN ISO 10211:2008	Mostki cieplne w budynkach - Strumienie ciepła i temperatury powierzchni - Obliczenia szczegółowe
	PN-EN 12831:2006	Instalacje ogrzewcze w budynkach - Metoda obliczania projektowego obciążenia cieplnego
	PN-EN ISO 13370:2008	Cieplne - właściwości użytkowe budynków - Wymiana ciepła przez grunt - Metody obliczania
	PN-EN ISO 13789:2008	Cieplne właściwości użytkowe budynków - Współczynniki wymiany ciepła przez przenikanie i wentylację - Metoda obliczania
	PN-EN ISO 14683:2008	Mostki cieplne w budynkach - Liniowy współczynnik przenikania ciepia - Metody uproszczone i wartości orientacyjne

	WYBRANE NORMY POLSKIE I MIEDZYNARODOWE	
I.p.	Nr normy	Tytut normy
	PN-EN 255-1:2000	Klimatyzatory, ziębiarki cieczy i pompy ciepła ze sprężarkami o napędzie elektrycznym. Funkcja grzania. Terminy, definicje i oznaczenia
	PN-EN 255-2:2000	Klimatyzatory, ziębiarki cieczy i pompy ciepła ze sprężarkami o napedzie elektrycznym. Funkcja grzania. Badanie i wymagania dotyczące oznakowania zespołów do ogrzewania pomieszczeń
	PN-EN 378-1:2010	Instalacje ziębnicze i pompy ciepła. Wymagania dotyczące bezpieczeństwa i ochrony środowiska. Część 1: Wymagania podstawowe, definicje, klasyfikacja i kryteria wyboru
	PN-EN 378-2:2010	Instalacje ziębnicze i pompy ciepla. Wymagania dotyczące bezpieczeństwa i ochrony środowiska. Część 2: Projektowanie, budowanie, sprawdzanie, znakowanie i dokumentowanie
	PN-EN 378-3:2010	Instalacje ziębnicze i pompy ciepła. Wymagania dotyczace bezpieczeństwa i ochrony środowiska. Część 3: Usytuowanie instalacji i ochrona osobista

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

b.

Kategoria obiektu: XVI

	PN-EN 378-4:2010	Instalacje ziębnicze i pompy ciepła. Wymagania dotyczaç bezpieczeństwa i ochrony środowiska. Częśc 4: Obsługa, konserwacja, naprawa i odzysk
	PN-EN 1861:2001	Instalacje ziębnicze i pompy ciepła. Schematy ideowe i montażowe instalacji, rurociągów i przyrządów. Układy i symbole
	PN-EN 12178:2006	Instalacje ziębnicze i pompy ciepła. Przyrządy wskazujące poziom cieczy. Wymagania, badanie i znakowanie
	PN-EN 12263:2003	Instalacje ziębnicze i pompy ciepła. Przekaźniki zabezpieczające przed nadmiernym ciśnieniem. Wymagania i badania
	PN-EN 12735-1:2003	Miedź i stopy miedzi. Rury miedziane bez szwu stosowane w instalacjach klimatyzacyjnych i chłodniczych. Część 1: Rury do instalacji rurowych
	Miedź i stopy miedzi. Rury miedziane bez szwu stosowane w instalacjach klimatyzacyjnych i chłodniczych. Część 2: Rury do oprzyrządowania	

$+$
Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.
\& Kategoria obiektu: XVI

5. INFORMACJA BIOZ

Informacja na temat Bezpieczeństwa i Ochrony Zdrowia do

PROJEKT BUDOWLANY:

„Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

Kategoria obiektu: XVI"

5. 1 Przedmiot opracowania

Tematem niniejszego opracowania jest Informacja dotycząca Bezpieczeństwa i Ochrony Zdrowia będąca częścią projektu budowlanego dotyczącego przebudowy z rozbudową budynku biurowego z salą konferencyjną Wielkopolskiej Izby Lekarskiej.

- 5.2 Podstawa opracowania

Projekt budowlany dla budynku biurowego z salą konferencyjna Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa z rozbudową.
Rozporządzenie ministra infrastruktury z 23 czerwca 2003r. w sprawie informacji dotyczącej bezpieczeństwa i ochrony zdrowia oraz planu bezpieczeństwa i ochrony zdrowia (Dz.U. 2003 r. Nr 120, poz. 1126).
-

5.3 Informacje dotyczące bezpieczeństwa i ochrony zdrowia

W trakcie wykonywania robót budowlano-instalacyjnych należy przestrzegać ogólnych zasad bezpieczeństwa i higieny pracy.

W szczególności należy zwrócić uwagę na następujące zagadnienia:

- praca na wysokości (dopuszcza się do pracy na wysokości tylko osoby posiadające odpowiednie badania lekarskie),
- zastosowanie materiałów i urządzeń ciężkich,
- stosowanie materiałów żrących lub cuchnących - chemikaliów niebezpiecznych grożących zatruciem lub uszkodzeniem powłoki skórnej,
- praca z narzędziami elektrycznymi (elektronarzędzia, spawanie),
- występowanie gorącej wody oraz zgrzewania materiałów,
- hałas pochodzący od maszyn i urządzeń,
- wykonywanie wykopów (zabezpieczenia przed zasypaniem ziemią, możliwość występowania licznego uzbrojenia podziemnego w otwartych wykopach).

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

- Kategoria obiektu: XVI
- w przypadku układania rur (kanalizacyjnych, wodnych) w wykopach oraz osadzania w nich studni (kanalizacji sanitarnej oraz deszczowej) oraz wpustów (kanalizacji deszczowej) należy wykopy te zabezpieczyć przed osunięciem się ziemi oraz przed wpadnięciem do nich pracowników. Należy zachować ostrożność przy wykonaniu wykopów w miejscach istniejącej sieci elektroenergetycznej (możliwość porażenia prądem), gazowych (możliwość wybuchu) oraz podczas ich zasypywania.

W trakcie robót budowlano-instalacyjnych należy przede wszystkim chronić głowę i oczy. Bezwzględnie używać okularów ochronnych, kasków, rękawic i obuwia z osłoną palców. Bezwzględnie stosować różnego rodzaju osłony, zabezpieczenia, siatki poziome i pionowe, balustrady i odbojnice. Pracownicy zatrudnieni przy realizacji robót muszą być przeszkoleni w zakresie BHP.

5.4 Instruktaż pracowników

Roboty będą prowadzone przez firmy posiadające niezbędne uprawnienia do prowadzenia robót.
Pracownicy posiadać winni wszelkie niezbędne uprawnienia do prowadzenia robót, a prawidłowość ich wykonania będzie sprawdzał Inspektor Nadzoru posiadający wszelkie niezbędne do tego uprawnienia i pozwolenia.

5.5 Środki techniczne i organizacyjne zapobiegające niebezpieczeństwu

+ Teren budowy będzie ogrodzony, w sposób uniemożliwiający przebywanie osobom postronnym. Ewentualne przejścia w pobliżu budowy powinny być odpowiednio zabezpieczone i zorganizowane w sposób zapewniający bezpieczeństwo.

Wykopy zabezpieczone i odpowiednio oznakowane.
W trakcie robót budowlano-instalacyjnych należy przede wszystkim chronić głowę i oczy. Bezwzględnie używać okularów ochronnych, kasków, rękawịc i obuwia z osłoną palców. Bezwzględnie stosować różnego rodzaju osłony, zabezpieczenia, siatki poziome i pionowe, balustrady i odbojnice. Pracownicy zatrudnieni przy realizacji robót muszą być przeszkoleni w zakresie BHP.

6. UWAGI KOŃCOWE

- Rysunki rozpatrywać razem z projektami branżowymi. Prace budowlane prowadzić na podstawie projektów wykonawczych.
- Przed przystąpieniem do prac oraz zamówień należy sprawdzić wszystkie istotne elementy w naturze.
- Przed rozpoczęciem robót należy opracować projekt wykonawczy.
- Ewentualne zmiany w projekcie należy uzgodnić z projektantem w ramach nadzoru autorskiego.
- Opisy instalacji podano w [mm].
- Projekt należy rozpatrywać łącznie z projektami innych branż.
- Rysunki, opis techniczny rozpatrywać łącznie. W przypadku wystąpienia elementu w jednej części projektu należy przyjąć, że występuje we wszystkich.
- Ewentualne zmiany w projekcie należy uzgodnić z projektantem w ramach nadzoru autorskiego.

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51
w Poznaniu - przebudowa, rozbudowa, działka nr 32, arkusz nr 09, obręb Poznań.

- Całość robót wykonać zgodnie z aktuainymi "Warunkami technicznymi wykonania i odbioru instalacji..." COBRTI Instal oraz obowiązującymi przepisami prawa budowlanego, bhp i ppoż."
- Po wykonaniu instalacji powietrznych i wodnych należy przeprowadzić ich regulację aerodynamiczną i hydrauliczną aby uzyskać przepływy zgodne z warunkami obliczeniowymi;
- Obowiązkiem wykonawcy jest spełnienie wymagań WUDT/UC/2003 i Dyrektywy 97/23/WE w zakresie wykonania wymaganych oznaczeń CE i wystawienia pisemnych deklaracji zgodności. Wykonawca zobowiązany jest do sporządzenia dokumentacji umożliwiającej ocenę zgodności wykonywanych urządzeń z Dyrektywą 97/23/WE i przechowywania jej przez okres 10 lat do kontroli przez odpowiednie władze państwowe.
- Ewentualne zmiany w projekcie należy uzgodnić z projektantem.
- Całość robót należy wykonać zgodnie z "Warunkami technicznymi wykonania i odbioru robót budowlanomontażowych" właściwymi dla wykonywanej instalacji oraz obowiązującymi przepisami bhp i p-poż a także zgodnie z „Rozporządzeniem Ministra Infrastruktury z 12.04 .2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie" (D. U. nr75/02 poz 690 z poprawkami).

Opracował:
mgr inż. Jarosław Hernes
upr. bud. WKP/0123/POOS/07
n

CZEÉĆ RYSUNKOWA

 forlunily

UWAGI:

- zawór odcinajaçy

 wod ep ofldep eu ouvenogzzinder 1 Tqo

$2 L \varepsilon$

Charakterystyka energetyczna Ekonomiczna analiza optymalizacyjno-porównawcza Środowiskowa analiza optymalizacyjno-porównawcza

Budynek oceniany:

upr. bud nr WKP/0123/POOS/07
do projektowania bez ograniczen

Charakterystyka energetyczna

Budynek oceniany:

Nazwa obiektu	Budynek biurowy z salą konferencyjna Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa z rozbudową KATEGORIA XVI	Zdjęcie budynku
Adres obiektu	Działka nr 32, Arkusz nr 09, Obręb Poznań ul. Nowowiejskiego 51, 61-734 Poznań.	
Całość/ częsćc budynku	część budynku	
Nazwa inwestora	Wielkopolska Izba Lekarska ul. Nowowiejskiego 51, 61-734 Poznań	
Kod, miejscowosć	$61-734$, Poznań	
Powierzchnia użytkowa o regulowanej temp. $\left(\mathrm{A}_{\mathrm{f},} \mathrm{m}^{2}\right)$	470,50	
Powierzchnia zabudowy $\left(\mathrm{Ag}_{\mathrm{g},} \mathrm{m}^{2}\right)$	192,00	
Kubatura budynku $\left(\mathrm{V}, \mathrm{m}^{3}\right)$	1758,00	

Spis treści:

1) Tabela zbiorcza przegród budowlanych użytych w projekcie
2) Sprawdzenie warunku powierzchni okien
3) Sprawdzenie warunku uniknięcia rozwoju pleśni
4) Tabela zbiorcza sezonowego zapotrzebowania na ciepło $Q_{H, n d}$ dla każdej strefy
5) Tabela zbiorcza sezonowego zapotrzebowania na ciepłą wodę $Q_{W, n d}$
6) Tabela zbiorcza sezonowego zapotrzebowania na chłód $Q_{C, n d}$ dla każdej strefy
7) Tabela zbiorcza sprawności systemu ogrzewania i wentylacji
8) Tabela zbiorcza sprawności systemu przygotowania ciepłej wody
9) Tabela zbiorcza sprawności systemu chłodzenia
10) Tabela zbiorcza sprawności systemu oświetlenia
11) Tabela zbiorcza wyników energii użytkowej, końcowej i pierwotnej
12) Sprawdzenie warunków granicznych wg WT2017
13) Urządzenia pomocnicze

Podstawa prawna:

- rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 25 kwietnia 2012 r. w sprawie szczegółowego zakresu i formy projektu budowlanego (Dz. U. z dnia 27 kwietnia 2012 r. poz. 462)
- rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 5 lipca 2013 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie

1) Tabela zbiorcza przegród budowlanych użytych w projekcie

Parametry przegród przezroczystych

2) Sprawdzenie warunku powierzchni okien

Przeznaczenie budynku	Budynki użyteczności publicznej
Pole powierzchni przegród szklanych i przezroczystych o współczynniku $U>=0,9\left[W / \mathrm{m}^{2} \cdot \mathrm{~K}\right]$	$\mathrm{A}_{0}=93,42 \mathrm{~m}^{2}$
Suma pól powierzchni rzutu poziomego wszystkich kondygnacji nadziemnych w pasie 5 m wzdłuż ścian zewnętrznych	$\mathrm{A}_{z}=626,00 \mathrm{~m}^{2}$
Suma pól powierzchni pozostałej części rzutu poziomego	$\mathrm{A}_{\mathrm{w}}=19,70 \mathrm{~m}^{2}$
Graniczna wartość powierzchni okien	$\mathrm{A}_{0 \text { max }}=0,15 \cdot \mathrm{~A}_{z}+0,03 \cdot \mathrm{~A}_{\mathrm{w}}=94,49 \mathrm{~m}^{2}$
Sprawdzenie warunku powierzchni okien $\mathrm{A}_{0} \leq \mathrm{A}_{0 \text { max }}$	Warunek spełniony

3) Sprawdzenie warunku uniknięcia rozwoju pleśni

3.1.1 Wartości obliczeniowego czynnika temperatury $f_{\text {Rsi,min }}$ dla przegród zewnętrznych

Wartości obliczeniowego czynnika temperatury $f_{\text {Rsi,min }}$ dla przegród: $\mathrm{Stp}, \mathrm{Sz}, \mathrm{Std}$

Miesiąc krytyczny: Luty

Wartość czynnika temperatury dla krytycznego miesiąca: $f_{\text {Rsi,max }}=0,73$

3.1.2 Wartości obliczeniowego czynnika temperatury $f_{\text {Rsi,min }}$ dla przegród stykających się \mathbf{z} gruntem

Wartości obliczeniowego czynnika temperatury $\mathrm{f}_{\text {Rsi.min }}$ dla przegród: Pg, Sg

	Miesiąc	frsiminW/ $\left.\mathrm{m}^{2} \mathrm{~K}\right]$
1	Styczeń	0,844
2	Luty	0,844
3	Marzec	0,844
4	Kwiecień	0,844
5	Maj	0,844
6	Czerwiec	0,844
7	Lipiec	0,844
8	Sierpień	0,844
9	Wrzesień	0,844
10	Październik	0,844
11	Listopad	0,844
12	Grudzień	0,844

Miesiąc krytyczny: Styczeń, Luty, Marzec, Kwiecień, Maj, Czerwiec, Lipiec, Sierpień, Wrzesień, Październik, Listopad, Grudzień

Wartośććczynnika temperatury dla krytycznego miesiąca: $f_{\text {Rsi,max }}=0,84$
3.2 Efektywna wartość czynnika temperatury na powierzchni wewnętrznej przegrody wyznaczona na podstawie wartości współczynnika przenikania ciepła elementu U oraz oporu przejmowania ciepła na powierzchni wewnętrznej Rsi dla poszczególnych przegród.

4) Tabela zbiorcza sezonowego zapotrzebowania na ciepło $Q_{H, n d}$ dla każdej strefy

Obliczenia zbiorcze dla strefy P-1 $20^{\circ} \mathrm{C}$												
Temperatura wewnętrzna strefy									θ_{i}		20,0	${ }^{\circ} \mathrm{C}$
Pole powierzchni pomieszczeń o regulowanej temperaturze									A_{f}		151,1	m^{2}
Obciążenia cieplne pomieszczeń zyskami wewnętrznymi									$q_{\text {lint }}$		6,8	$\mathrm{W} / \mathrm{m}^{2}$
Pojemność cieplna budynku									C_{m}	855	78208	J / K
Stała czasowa budynku									τ		146,0	h
Udział granicznych potrzeb ciepła									$\gamma_{\text {н,lim }}$		1,1	-
-									a_{H}		10,7	-
Obliczenia miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji $Q_{\mathrm{H}, \mathrm{nd}, \mathrm{n}} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$												
Miesiąc	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Średnia temperatura zewnętrzna $\theta e,{ }^{\circ} \mathrm{C}$	0,2	-1,8	2,7	8,3	13,0	16,8	18,3	18,4	13,5	7,0	2,2	-0,1
Liczba godzin w miesiącu $\mathrm{t}_{\mathrm{m},} \mathrm{h}$	744	672	744	720	744	720	744	744	720	744	720	744
Miesięczna strata ciepła przez przenikanie $Q_{H, t h}=10^{-3} \cdot H_{t r} \cdot\left(\theta_{i}-\theta_{\mathrm{e}}\right) \cdot t_{\mathrm{m}} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$	855	851	747	489	302	134	73	69	272	562	744	868
Miesięczna strata ciepła przez przenikanie z strefami ogrzewanymi $\begin{aligned} & Q_{H, z z}=10^{-3} \cdot \mathrm{H}_{z y} \cdot\left(\theta_{i}-\theta_{\mathrm{i}, \mathrm{yz}}\right) \cdot \mathrm{t}_{\mathrm{m}} \\ & \mathrm{kWh} / \mathrm{m}-\mathrm{c} \end{aligned}$	68,82	62,16	68,82	66,60	68,82	66,60	68,82	68,82	66,60	68,82	66,60	68,82
Miesięczna strata ciepła przez przenikanie $Q_{H, h t}=Q_{H, t}+Q_{H, z y}$ $\mathrm{kWh} / \mathrm{m}-\mathrm{c}$	924	913	816	556	371	200	142	138	338	630	811	937
Miesięczne zyski ciepła od nasłonecznienia $Q_{\text {sol }}, k W h / m-c$	0	0	0	0	0	0	0	0	0	0	0	0
Miesięczne wewnętrzne zyski ciepła $Q_{i n t}=q_{i n t} \cdot 10^{-3} \cdot A_{f} \cdot t_{m}$ $\mathrm{kWh} / \mathrm{m}-\mathrm{c}$	764	690	764	740	764	740	764	764	740	764	740	764
Miesięczne zyski ciepła $\mathrm{Q}_{\text {H. an }}=\mathrm{Q}_{\text {sol }}+\mathrm{Q}_{\text {int }} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$	764	690	764	740	764	740	764	764	740	764	740	764
$\gamma_{H}=\mathrm{Q}_{\mathrm{H}, \mathrm{gn}} / \mathrm{Q}_{\mathrm{H}, \mathrm{ht}}$	0,32	0,29	0,36	0,54	0,90	1,97	3,71	3,94	0,97	0,49	0,35	0,31
$\gamma_{\text {H. } 1}$	0,30	0,30	0,33	0,45	0,72	0,00	0,00	0,00	0,73	0,42	0,33	0,32
$\gamma_{H, 2}$	0,32	0,33	0,45	0,72	1,44	0,00	0,00	0,00	2,46	0,73	0,42	0,33
$\mathrm{f}_{\mathrm{H}, \mathrm{m}}$	1,00	1,00	1,00	1,00	0,68	0,00	0,00	0,00	0,54	1,00	1,00	1,00
Współczynnik wykorzystania	1,00	1,00	1,00	1,00	0,95	0,51	0,27	0,25	0,93	1,00	1,00	1,00

Obliczenia zbiorcze dla strefy $\mathbf{P - 1} \mathbf{1 6}{ }^{\circ} \mathrm{C}$			
Temperatura wewnętrzna strefy	θ_{i}	16,0	${ }^{\circ} \mathrm{C}$
Pole powierzchni pomieszczeń o regulowanej temperaturze	A_{f}	35,5	$\mathrm{~m}^{2}$
Obciążenia cieplne pomieszczeń zyskami wewnętrznymi	$\mathrm{q}_{\mathrm{int}}$	6,8	$\mathrm{~W} / \mathrm{m}^{2}$
Pojemność cieplna budynku	C_{m}	40115124	$\mathrm{~J} / \mathrm{K}$
Stała czasowa budynku	τ	$-634,3$	h
Udział granicznych potrzeb ciepła	$\gamma_{\mathrm{H}, \text { lim }}$	1,0	-
-	a_{H}	$-41,3$	-

Obliczenia miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji $Q_{H, n d, n} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$

| Współczynnik wykorzystania
 zysków ciepła, $\eta_{\mathrm{H}, \mathrm{gn}}$ | $-1,15$ | $-1,30$ | $-0,97$ | $-0,56$ | $-0,22$ | 1,00 | 1,00 | 1,00 | $-0,18$ | $-0,66$ | $-1,01$ | $-1,17$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Miesięczne zapotrzebowanie
 na energię $\mathrm{Q}_{\mathrm{H}, \mathrm{nd}, \mathrm{n}}=\mathrm{Q}_{\mathrm{H}, \mathrm{ht}}-$
 $\eta_{\mathrm{H}, \mathrm{gn}} \cdot \mathrm{Q}_{\mathrm{H}, \mathrm{gn}} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$ | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |

Obliczenia zbiorcze dla strefy P0 $\mathbf{2 0}^{\circ} \mathrm{C}$							
Temperatura wewnętrzna strefy	θ_{i}	20,0	${ }^{\circ} \mathrm{C}$				
Pole powierzchni pomieszczeń o regulowanej temperaturze	A_{f}	141,1	$\mathrm{~m}^{2}$				
Obciążenia ciepIne pomieszczeń zyskami wewnętrznymi	$\mathrm{q}_{\mathrm{int}}$	6,8	$\mathrm{~W} / \mathrm{m}^{2}$				
Pojemność ciepIna budynku	C_{m}	34628550	$\mathrm{~J} / \mathrm{K}$				
Stała czasowa budynku	τ	30,6	h				
Udział granicznych potrzeb ciepła	$\gamma_{H, l i m}$	1,3	-				
-	a_{H}	3,0	-				

Obliczenia miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji $Q_{H, n d, n} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$

Miesiąc	1	11	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Średnia temperatura zewnętrzna $\theta \mathrm{e},{ }^{\circ} \mathrm{C}$	0,2	-1,8	2,7	8,3	13,0	16,8	18,3	18,4	13,5	7,0	2,2	-0,1
Liczba godzin w miesiącu t_{m}, h	744	672	744	720	744	720	744	744	720	744	720	744
Miesięczna strata ciepła przez przenikanie $Q_{H, t h}=10^{-3} \cdot H_{t r} \cdot\left(\theta_{\mathrm{i}}-\theta_{\mathrm{e}}\right) \cdot \mathrm{t}_{\mathrm{m}} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$	1684	1675	1472	963	595	263	145	136	535	1106	1465	1710
Miesięczna strata ciepła przez przenikanie z strefami ogrzewanymi $Q_{H, z y}=10^{-3} \cdot H_{z y} \cdot\left(\theta_{i}-\theta_{i, y z}\right) \cdot t_{m}$ $\mathrm{kWh} / \mathrm{m}-\mathrm{c}$	11,30	10,20	11,30	10,93	11,30	10,93	11,30	11,30	10,93	11,30	10,93	11,30
Miesięczna strata ciepła przez przenikanie $Q_{H, h t}=Q_{H, t}+Q_{H, z y}$ $\mathrm{kWh} / \mathrm{m}-\mathrm{c}$	1696	1685	1483	974	607	274	156	147	546	1117	1476	1721
Miesięczne zyski ciepła od nasłonecznienia $Q_{\text {sol }}, \mathrm{kWh} / \mathrm{m}-\mathrm{c}$	1027	1275	2277	3192	4006	4361	4221	3547	2625	1647	1031	706
Miesięczne wewneetrzne zyski ciepła $Q_{\text {int }}=q_{\text {int }} \cdot 10^{-5} \cdot A_{\mathrm{f}} \cdot \mathrm{t}_{\mathrm{m}}$ $\mathrm{kWh} / \mathrm{m}-\mathrm{c}$	714	645	714	691	714	691	714	714	691	714	691	714
Miesięczne zyski ciepła $Q_{\text {H, an }}=Q_{\text {sol }}+Q_{\text {int }} k W h / m-c$	1741	1920	2991	3883	4720	5052	4935	4261	3316	2361	1722	1419
$\gamma_{H}=\mathrm{Q}_{\mathrm{H}, \mathrm{gn}} / \mathrm{Q}_{\mathrm{H}, \mathrm{ht}}$	0,38	0,42	0,74	1,47	2,89	6,99	12,43	11,40	2,26	0,78	0,43	0,30
$\gamma_{\text {H. } 1}$	0,34	0,40	0,58	1,10	2,18	0,00	0,00	0,00	1,52	0,60	0,37	0,34
$\gamma_{H, 2}$	0,40	0,58	1,10	2,18	4,94	0,00	0,00	0,00	6,83	1,52	0,60	0,37

$f_{H, m}$	1,00	1,00	1,00	0,31	0,00	0,00	0,00	0,00	0,00	0,87	1,00	1,00
Wspólczynnik wykorzystania zysków ciepła, $\eta_{H, g n}$	0,97	0,96	0,85	0,60	0,34	0,14	0,08	0,09	0,42	0,84	0,96	0,98
Miesięczne zapotrzebowanie na energię $Q_{H, n n, n}=Q_{H, h t}-$ $\eta_{H, g n} Q_{H, g n} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$	2939, 35	2758, 90	1491, 17	332,1 8	42,98	1,67	0,17	0,21	71,31	1057, 35	2377, 14	3300, 18

Obliczenia zbiorcze dla strefy $\mathrm{PO} 16^{\circ} \mathrm{C}$			
Temperatura wewnętrzna strefy	θ_{i}	16,0	${ }^{\circ} \mathrm{C}$
Pole powierzchni pomieszczeń o regulowanej temperaturze	A_{f}	2,8	$\mathrm{~m}^{2}$
Obciążenia cieplne pomieszczeń zyskami wewnętrznymi	$\mathrm{q}_{\text {int }}$	6,8	$\mathrm{~W} / \mathrm{m}^{2}$
Pojemność cieplna budynku	C_{m}	6387331	$\mathrm{~J} / \mathrm{K}$
Stała czasowa budynku	τ	$-73635,7$	h
Udział granicznych potrzeb ciepła	$\gamma_{H, l i m}$	1,0	-
-	a_{H}	$-4908,0$	-

Obliczenia miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji $Q_{H, n d, n} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$

Miesiąc	1	11	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Średnia temperatura zewnętrzna $\theta \mathrm{e},{ }^{\circ} \mathrm{C}$	0,2	-1,8	2,7	8,3	13,0	16,8	18,3	18,4	13,5	7,0	2,2	-0,1
Liczba godzin w miesiącu $\mathrm{t}_{\mathrm{m}}, \mathrm{h}$	744	672	744	720	744	720	744	744	720	744	720	744
Miesięczna strata ciepła przez przenikanie $Q_{\mathrm{H}, \mathrm{th}}=10^{-3} \cdot H_{\mathrm{tr}^{\circ}} \cdot\left(\theta_{\mathrm{i}}-\theta_{\mathrm{e}}\right) \cdot \mathrm{t}_{\mathrm{m}} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$	-3	-3	-3	-2	-1	0	0	0	-1	-2	-3	-3
Miesięczna strata ciepła przez przenikanie z strefami ogrzewanymi $Q_{H, z y}=10^{-3} \cdot H_{z y} \cdot\left(\theta_{i}-\theta_{\mathrm{i}, \mathrm{yz}}\right) \cdot t_{\mathrm{m}}$ $\mathrm{kWh} / \mathrm{m}-\mathrm{c}$	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Miesięczna strata ciepła przez przenikanie $Q_{H, h t}=Q_{H, t}+Q_{H, z y}$ $\mathrm{kWh} / \mathrm{m}$-c	-3	-3	-3	-2	-1	0	0	0	-1	-2	-3	-3
Miesięczne zyski ciepła od nasłonecznienia $Q_{\text {sol }}, k W h / m-c$	0	0	0	0	0	0	0	0	0	0	0	0
Miesięczne wewnętrzne zyski ciepła $Q_{\text {ini }}=q_{\text {int }} \cdot 10^{-3} \cdot A_{f} \cdot \mathrm{t}_{\mathrm{m}}$ $\mathrm{kWh} / \mathrm{m}-\mathrm{c}$	14	13	14	14	14	14	14	14	14	14	14	14
Miesięczne zyski ciepła $Q_{H, a n}=Q_{\text {sol }}+Q_{\text {int }} k W h / m-c$	14	13	14	14	14	14	14	14	14	14	14	14
$\gamma_{H}=Q_{H, g n} / Q_{H, h t}$	$\begin{array}{r} -50,7 \\ 3 \end{array}$	$\begin{array}{\|r\|} \hline-45,0 \\ 3 \end{array}$	$\begin{array}{r} -60,2 \\ 6 \end{array}$	$\begin{array}{r} -104 \\ 09 \end{array}$	$\begin{array}{r} -267, \\ 16 \end{array}$	$\begin{array}{r} 1001 \\ 86 \end{array}$	$\begin{array}{r} 348,4 \\ 7 \end{array}$	$\begin{array}{r} 333,9 \\ 5 \end{array}$	$\begin{array}{r} -320, \\ 60 \end{array}$	$\begin{array}{r} -89,0 \\ 5 \end{array}$	$\begin{array}{r} -58,0 \\ 8 \end{array}$	$\begin{array}{r} -49,7 \\ 8 \end{array}$
$\gamma_{\mathrm{H}, 1}$	667,9	1001,	1001,	1001,	1001,	0,00	0,00	0,00	333,9	333,9	333,9	333,9

\(\left.$$
\begin{array}{|l|r|r|r|r|r|r|r|r|r|r|r|r|}\hline & 1 & 86 & 86 & 86 & 86 & & & & 5 & 5 & 5 & 5 \\
\hline \gamma_{H, 2} & \begin{array}{r}1001, \\
86\end{array} & \begin{array}{r}1001, \\
86\end{array} & \begin{array}{r}1001, \\
86\end{array} & \begin{array}{r}1001, \\
86\end{array} & \begin{array}{rl}1001, \\
86\end{array}
$$ \& 0,00 \& 0,00 \& 0,00 \& 333,9 \& 333,9 \& 333,9

5\end{array}\right)\)| 667,9 |
| ---: |
| 1 |$|$

Obliczenia zbiorcze dla strefy P+1 $20^{\circ} \mathrm{C}$												
Temperatura wewnętrzna strefy									θ_{i}		20,0	${ }^{\circ} \mathrm{C}$
Pole powierzchni pomieszczeń o regulowanej temperaturze									A_{f}		137,2	m^{2}
Obciążenia cieplne pomieszczeń zyskami wewnętrznymi									Gint		6,8	$\mathrm{W} / \mathrm{m}^{2}$
Pojemnośćcieplna budynku									C_{m}	460	02654	J / K
Stała czasowa budynku									τ		87,0	h
Udział granicznych potrzeb ciepła									$\gamma_{\text {H,lim }}$		1,1	-
-									a_{H}		6,8	-
Obliczenia miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji $\mathrm{Q}_{\mathrm{H}, \mathrm{nd}, \mathrm{n}} \mathrm{kWVh} / \mathrm{m}-\mathrm{c}$												
Miesiąc	1	11	III	IV	V	VI	VII	VIII	IX	X	XI	XII
Średnia temperatura zewnętrzna $\theta \mathrm{e},{ }^{\circ} \mathrm{C}$	0,2	-1,8	2,7	8,3	13,0	16,8	18,3	18,4	13,5	7,0	2,2	-0,1
Liczba godzin w miesiącu $\mathrm{t}_{\mathrm{m}}, \mathrm{h}$	744	672	744	720	744	720	744	744	720	744	720	744
Miesięczna strata ciepła przez przenikanie $Q_{\mathrm{H}, \mathrm{th}}=10^{-3} \cdot \mathrm{H}_{\mathrm{tr}} \cdot\left(\theta_{\mathrm{i}}-\theta_{\mathrm{e}}\right) \cdot \mathrm{t}_{\mathrm{m}} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$	1675	1666	1464	958	592	262	144	135	532	1100	1457	1701
Miesięczna strata ciepła przez przenikanie z strefami ogrzewanymi $Q_{H, z y}=10^{-3} \cdot H_{z y} \cdot\left(\theta_{i}-\theta_{i, y z}\right) \cdot t_{m}$ $\mathrm{kWh} / \mathrm{m}-\mathrm{c}$	7,11	6,42	7,11	6,88	7,11	6,88	7,11	7,11	6,88	7,11	6,88	7,11
Miesięczna strata ciepła przez przenikanie $Q_{H, h t}=Q_{H, t}+Q_{H, z y}$ $\mathrm{kWh} / \mathrm{m}$-c	1682	1672	1471	965	599	269	151	142	539	1107	1464	1708
Miesięczne zyski ciepła od nasłonecznienia $Q_{\text {sol }}, \mathrm{kWh} / \mathrm{m}-\mathrm{c}$	478	655	1134	1800	2330	2670	2592	2100	1486	905	503	402
Miesięczne wewneetrzne zyski ciepła $Q_{\text {int }}=q_{i n t} \cdot 10^{-3} \cdot A_{\mathrm{f}} \mathrm{t}_{\mathrm{m}}$ kWh/m-c	694	627	694	672	694	672	694	694	672	694	672	694
Miesięczne zyski ciepła $\mathrm{Q}_{\mathrm{H}, \mathrm{gn}}=\mathrm{Q}_{\mathrm{sol}}+\mathrm{Q}_{\text {int }} \mathrm{KWh} / \mathrm{m}-\mathrm{C}$	1172	1282	1828	2471	3024	3342	3286	2794	2158	1599	1174	1096

Obliczenia zbiorcze dla strefy $\mathrm{P}+\mathbf{1 1 6 { } ^ { \circ } \mathrm { C }}$			
Temperatura wewnętrzna strefy	θ_{i}	16,0	${ }^{\circ} \mathrm{C}$
Pole powierzchni pomieszczeń o regulowanej temperaturze	A_{f}	2,8	$\mathrm{~m}^{2}$
Obciazżenia cieplne pomieszczeń zyskami wewnętrznymi	$\mathrm{q}_{\text {int }}$	6,8	$\mathrm{~W} / \mathrm{m}^{2}$
Pojemność cieplna budynku	C_{m}	5465606	$\mathrm{~J} / \mathrm{K}$
Stała czasowa budynku	τ	3025,9	h
Udział granicznych potrzeb ciepła	$\gamma_{H, l i m}$	1,0	-
-	a_{H}	202,7	-

Obliczenia miesięcznego zapotrzebowania na energię do ogrzewania i wentylacji $\mathrm{Q}_{\mathrm{H}, \mathrm{nd}, \mathrm{n}} \mathrm{kWh} / \mathrm{m}-\mathrm{c}$

5) Tabela zbiorcza sezonowego zapotrzebowania na ciepłą wodę $Q_{w, n d}$

Obliczenia instalacja ciepłej wody użytkowej		
czę̨ść budynku		
Ciepło właściwe wody, c_{w}	4,19	$\mathrm{~kJ} /(\mathrm{kg} \cdot \mathrm{K})$
Gęstość wody, ρ_{W}	1000	$\mathrm{~kg} / \mathrm{m}^{3}$
Temperatura ciepłej wody, θ_{w}	55	${ }^{\circ} \mathrm{C}$
Temperatura zimnej wody, θ_{O}	10	${ }^{\circ} \mathrm{C}$
Współczynnik korekcyjny, k_{R}	0,70	-
Powierzchnia o regulowanej temperaturze, A_{f}	470,50	$\mathrm{~m}^{2}$
Jednostkowe dobowe zużycie ciepłej wody, V_{W}	0,35	$\mathrm{dm}^{3} /\left(\mathrm{m}^{2} \cdot \mathrm{dzień)}\right.$
Roczna energia użytkowa do przygotowania c.w.u., $Q_{W, n d}$	2203,65	$\mathrm{kWh} / \mathrm{rok}$

4

6) Tabela zbiorcza sezonowego zapotrzebowania na chłód $Q_{c, n d}$ dla każdej strefy

7) Tabela zbiorcza sprawności systemu ogrzewania i wentylacji

8) Tabela zbiorcza sprawności systemu przygotowania ciepłej wody

część budynku		
Nazwa źródła	Podgrzewacz elektryczny	
Nr źródła	1	-
Udział procentowy	100,00	\%
Rodzaj nośnika energii	Sieć elektroenergetyczna systemowa - Energia elektryczna	
Współczynnik $\mathrm{W}_{\text {W }}$	3,00	-
Współczynnik $\mathrm{W}_{\text {el }}$	3,00	-
Energia użytkowa $\mathrm{Q}_{\mathrm{W} \text {,nd }}$	2203,65	kWh/rok
Wybrany wariant wytwarzania	Elektryczny podgrzewacz akumulacyjny (z zasobnikiem ciepłej wody użytkowej bez strat)	
Sprawność wytwarzania $\eta_{W, 9}$	0,96	-
Wybrany wariant przesyłu	Miejscowe podgrzewanie wody, system bez obiegów cyrkulacyjnych	
Rodzaj przesyłu ciepłej wody	Podgrzewanie wody bezpośrednio przy punktach poboru	
Sprawność przesyłu $\eta_{w, d}$	1,00	-
Wybrany wariant akumulacji	System przygotowania ciepłej wody użytkowej bez zasobnika ciepłej wody użytkowej	
Sprawność akumulacji $\eta_{\text {W, }}$	1,00	-
Całkowita sprawność systemu zasilania i-tego nośnika $\eta_{\text {w,tot }}$	0,96	-
Energia na urządzenia pomocnicze $\mathrm{E}_{\text {el,pom,w\% }}$	0,00	kWh/rok

9) Tabela zbiorcza sprawności systemu chłodzenia

10) Tabela zbiorcza sprawności systemu oświetlenia

11) Tabela zbiorcza wyników energii użytkowej, końcowej i pierwotnej

Budynek referencyjny wg WT2017

Powierzchnia użytkowa ogrzewanego budynku	A_{f}	470,50	$\mathrm{~m}^{2}$
Powierzchnia użytkowa chłodzonego budynku	$\mathrm{A}_{\mathrm{f}, \mathrm{C}}$	166,40	$\mathrm{~m}^{2}$
Czasstkowa maksymalna wartość wskaźnika EP na potrzeby ogrzewania, wentylacji oraz przygotowania ciepłej wody użytkowej	$\mathrm{EP}_{\mathrm{H}+\mathrm{W}}$	60,00	$\mathrm{kWh} /\left(\mathrm{m}^{2} \cdot \mathrm{rok}\right)$
Czastkowa maksymalna wartość wskaźnika EP na potrzeby chłodzenia	$\Delta E P_{\mathrm{C}}$	8,84	$\mathrm{kWh} /\left(\mathrm{m}^{2} \cdot \mathrm{rok}\right)$
Cząstkowa maksymalna wartość wskaźnika EP na potrzeby oświetlenia	$\Delta E P_{\mathrm{L}}$	100,00	$\mathrm{kWVh} /\left(\mathrm{m}^{2} \cdot \mathrm{rok}\right)$
Maksymalna wartość wskaźnika EP określającego roczne obliczeniowe zapotrzebowanie budynku na nieodnawialną energię pierwotną do ogrzewania, wentylacji, chłodzenia, przygotowania ciepłej wody użytkowej oraz oświetlenia	$E P_{\max }$	168,84	$\mathrm{kWh} /\left(\mathrm{m}^{2} \cdot \mathrm{rok}\right)$

Sprawdzenie warunku na EP

$E P \mathrm{kWh} /\left(\mathrm{m}^{2} \cdot \mathrm{rok}^{2}\right)$		$E P_{\max } \mathrm{kWh} /\left(\mathrm{m}^{2} \cdot\right.$ rok $)$	Uwagi
158,03	$<$	168,84	Warunek spełniony

12) Sprawdzenie warunków granicznych wg WT2017

Wskaźnik rocznego zapotrzebowanla na nieodnawialną energię pierwotna EP $\left[\mathrm{kWh} /\left(\mathrm{m}^{2} \cdot \mathrm{rok}\right)\right]$

Nazwa	Spełniony	Niespełniony	Uwagi
Warunek izolacyjności ciepInej przegród	Tak		
Warunek powierzchni okien	Tak		
Warunek EP < EP			
Wax	Tak		

13) Urządzenia pomocnicze

Lp.	System	Zapotrzebowanie na energię pomocniczą końcową $\mathrm{E}_{\text {pom }}[\mathrm{kWhh} / \mathrm{rok}]$	Uwagi
1	Ogrzewanie	702,64	
2	Wentylacja	1607,42	

Ekonomiczna analiza optymalizacyjno-porównawcza

Budynek oceniany:

Nazwa obiektu	Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu - przebudowa z rozbudową KATEGORIA XVI	Zdjęcie budynku
Adres obiektu	Działka nr 32, Arkusz nr 09, Obręb Poznań ul. Nowowiejskiego 51, 61-734 Poznań.	
Całość/ część budynku	część budynku	
Nazwa inwestora	Wielkopolska Izba Lekarska ul. Nowowiejskiego 51, 61-734 Poznań	
Kod, miejscowość	$61-734$, Poznań	
Powierzchnia uzytkowa o regulowanej temp. $\left(A_{f}, \mathrm{~m}^{2}\right)$	470,50	
Powierzchnia zabudowy $\left(\mathrm{A}_{\mathrm{g},} \mathrm{m}^{2}\right)$	192,00	
Kubatura budynku $\left(\mathrm{V}, \mathrm{m}^{3}\right)$	1758,00	

Spis treści:

1. Dane budynku
2. Zestawienie rocznego zapotrzebowania na energię użytkową
3. Dostępne nośniki energii
4. Warunki przyłączenia do sieci zewnętrznych
5. Zestawienie użytych cen jednostkowych na poszczególne paliwa

- 6. Opis systemów zapotrzebowania w energię do analizy porównawczej

7. Charakterystyka źródeł energii systemu ogrzewania i wentylacji
8. Charakterystyka źródeł energii systemu przygotowania ciepłej wody
9. Wykresy porównawcze zużycia nośników energii
10. Obliczenia optymalizacyjno-porównawcze kosztów eksploatacyjnych i inwestycyjnych systemu ogrzewania i wentylacji
11. Obliczenia optymalizacyjno-porównawcze kosztów eksploatacyjnych i inwestycyjnych systemu przygotowania ciepłej wody
12. Obliczenia optymalizacyjno-porównawcze dla wybranych systemów zapotrzebowania w energię
13. Wyniki analizy porównawczej i wybór systemu zaopatrzenia w energię
14. Zestawienie kosztów inwestycyjno - eksploatacyjnych za okres 10,00 lat

1. Dane budynku

1.1. Dane adresowe:

Nazwa budynku: Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej
Adres budynku: Dz. nr 32, Arkusz nr 09, Obręb Poznań ul. Nowowiejskiego 51
Nazwa inwestora: Wielkopolska Izba Lekarska
Adres inwestora: Poznań, ul. Nowowiejskiego 51
1.2. Dane geometryczne:

- Przeznaczenie budynku: Użyteczności publicznej

Strefa klimatyczna: II
Stacja meteorologiczna: Poznań
Powierzchnia zabudowy $A_{z}=192,00 \mathrm{~m}^{2}$
Powierzchnia o regulowanej temperaturze $A_{i}=470,50 \mathrm{~m}^{2}$
Powierzchnia netto $A=467,66 \mathrm{~m}^{2}$
Kubatura po obrysie zewnętrznym $V_{e}=2281,09 \mathrm{~m}^{3}$
Kubatura ogrzewana budynku $V=1562,00 \mathrm{~m}^{3}$
Liczba kondygnacji: 3
2. Zestawienie rocznego zapotrzebowania na energię użytkową
2.1. Zestawienie rocznego zapotrzebowania na energię użytkową dla systemu ogrzewania i wentylacji

2.1.1. System projektowany

Lp.	Rodzaj paliwa	Udział \%	Q $_{\text {H,nd }}$ [kWh/rok]
1	Ciepło sieciowe z kogeneracji - Węgiel kamienny	100,0	27801,1

2.1.2. System alternatywny

Lp.	Rodzaj paliwa	Udział \%	$\mathbf{Q}_{H, \text { nd }}[\mathrm{kWh} / \mathrm{rok}]$
1	Ciepło sieciowe z kogeneracji - Węgiel kamienny	100,0	27801,1

2.2. Zestawienie rocznego zapotrzebowania na energię użytkową dla systemu przygotowania ciepłej wody

2.2.1. System projektowany

Lp.	Rodzaj paliwa	Udział \%	Q $_{w, n d}$ [kWh/rok]
1	Sieć elektroenergetyczna systemowa - Energia elektryczna	100,0	2203,6

2.2.2. System alternatywny

Lp.	Rodzaj paliwa	Udział \%	$Q_{w, n d}[\mathrm{kWh} / \mathrm{rok}]$
1	Sieć elektroenergetyczna systemowa - Energia elektryczna	100,0	2203,6

3. Dostępne nośniki energii
energia elektryczna, ciepło sieciowe z kogeneracji - węgiel kamienny
4. Warunki przyłączenia do sieci zewnętrznych energia elektryczna, ciepło sieciowe z kogeneracji - węgiel kamienny 5. Zestawienie użytych cen jednostkowych na poszczególne paliwa

5.1 Budynek projektowany

Lp.	Rodzaj paliwa	Cena jedn.	Jedn.	Uwagi
1	Ciepło sieciowe z kogeneracji - Węgiel kamienny	0,56	zł/kWh	
2	Sieć elektroenergetyczna systemowa - Energia elektryczna	0,60	$z \not / \mathrm{kWh}$	

5.2 Budynek z alternatywnymi źródłami energii

Lp.	Rodzaj paliwa	Cena jedn.	Jedn.	Uwagi
1	Ciepło sieciowe z kogeneracji - Węgiel kamienny	0,56	$z \not / / \mathrm{kWh}$	
2	Sieć elektroenergetyczna systemowa - Energia elektryczna	0,60	$\mathrm{z} / \mathrm{kWh}$	

6. Opis systemów zapotrzebowania w energię do analizy porównawczej

7. Charakterystyka źródeł energii systemu ogrzewania i wentylacji

7.1. Budynek projektowany

Rodzaj paliwa	Udział $\%$	$\eta_{H, \text { tot }}$	H_{u}	Jedn.	$\mathbf{Q}_{k, H}[\mathrm{kWh} /$ rok]	Zużycie paliwa B	Jedn.
Ciepło sieciowe z kogeneracji - Węgiel kamienny	100,0	0,84	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	33240,9	33240,9	$\mathrm{kWh} / \mathrm{rok}$
Sieć elektroenergetyczna systemowa - Energia elektryczna	-	-	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	2310,1	2310,1	$\mathrm{kWh} / \mathrm{rok}$

7.2. Budynek z alternatywnymi źródłami energii

Rodzaj paliwa	Udział $\%$	$\eta_{H, \text { tot }}$	H_{u}	Jedn.	Q $_{\mathrm{K}, \mathrm{H}}[\mathrm{kWh} / \mathrm{rok}]$	Zużycie paliwa B	Jedn.
Ciepło sieciowe z kogeneracji - Węgiel kamienny	100,0	2,41	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	11546,9	11546,9	$\mathrm{kWh} / \mathrm{rok}$
Sieć elektroenergetyczna systemowa - Energia elektryczna	-	-	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	1974,4	1974,4	$\mathrm{kWh} / \mathrm{rok}$

7.3. Porównanie zużycia nośników energii dla budynku projektowanego i źródła alternatywnego

Zużycie nośników energii na ogrzewanie i wentylację

Wykres porównawczy zużycia nośników energii dla systemu ogrzewania i wentylacji
8. Charakterystyka źródeł energii systemu przygotowania ciepłej wody

8.1. Budynek projektowany

Rodzaj paliwa	Udział $\%$	$\eta_{w, \text { tot }}$	H_{u}	Jedn.	$Q_{k, w}[k W h /$ rok $]$	Zużycie paliwa B	Jedn.
Sieć elektroenergetyczna systemowa - Energia elektryczna	100,0	0,96	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	2295,5	2295,5	$\mathrm{kWh} / \mathrm{rok}$
Sieć elektroenergetyczna systemowa - Energia elektryczna	-	-	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	0,0	0,0	$\mathrm{kWh} / \mathrm{rok}$

8.2. Budynek z alternatywnymi źródłami energii

Rodzaj paliwa	Udział $\%$	$\eta_{W, t o t}$	H_{u}	Jedn.	$Q_{\mathrm{K}, \mathrm{W}}[\mathrm{kWh} /$ rok]	Zużycie paliwa B	Jedn.
Sieć elektroenergetyczna systemowa - Energia elektryczna	100,0	2,04	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	1080,2	1080,2	$\mathrm{kWh} / \mathrm{rok}$
Sieć elektroenergetyczna systemowa - Energia elektryczna	-	-	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	139,3	139,3	$\mathrm{kWh} / \mathrm{rok}$

8.3. Porównanie zużycia nośników energii dla budynku projektowanego i źródła alternatywnego

Zużycie nośników energii na przygotowanie cieplej wody

Sieć
elektroenergetyczna
systemowa

Energia
elektryczna
[$\mathrm{KW} \mathrm{h} /$
rok]

Wykres porównawczy zużycia nośników energii dla systemu przygotowania ciepłej wody

- 9. Wykresy porównawcze zużycia nośników energii

Wykres zużycia nośników energii dla wszystkich systemów w budynku projektowanym

Wykres zużycia nośników energii dla wszystkich systemów w budynku ze źródłami alternatywnymi

Zużycie nośników energii dla wszystkich systemów w budynku

Wykres porównawczy zużycia nośników energii dla wszystkich systemów w budynku
10. Obliczenia optymalizacyjno-porównawcze kosztów eksploatacyjnych i inwestycyjnych systemu ogrzewania i wentylacji

Budynek projektowany

Dodatkowe informacje:

Koszty eksploatacyjne

Koszty inwestycyjne

Lp.	Rodzaj robót	llość robót	Cena jedn.	Koszty robót	Uzasadnienie przyjętych kosztów
1	Istniejący węzeł cieplny	1,0	0,00	0,00	
Całkowite koszty inwestycyjne $K_{H, l}=$		zł	0,00		

Budynek z alternatywnymi źródłami energii
Dodatkowe informacje:

Koszty inwestycyjne									
Lp.	Rodzaj robót	Ilość robót	Cena jedn.	Koszty robót	Uzasadnienie przyjętych Kosztów				
1	źródło ciepła - pompa ciepła w układzie c.o.	1,0	101200,00	124476,00					
Całkowite koszty inwestycyjne $\mathrm{K}_{\mathrm{H}, \mathrm{l}}=$							zł	124476,00	

Wykres porównawczy kosztów inwestycyjnych systemu ogrzewania i wentylacji

Wykres porównawczy kosztów eksploatacyjnych systemu ogrzewania i wentylacji
11. Obliczenia optymalizacyjno-porównawcze kosztów eksploatacyjnych i inwestycyjnych systemu przygotowania ciepłej wody

Budynek projektowany					
Dodatkowe informacje:					
Koszty eksploatacyjne					
Lp.	Rodzaj robót	Zużycie paliwa	Jedn.	Koszty	Uwagi
1	Sieć elektroenergetyczna systemowa - Energia elektryczna	2295,47	kWh/rok	1377,28	
2	Sieć elektroenergetyczna systemowa - Energia elektryczna	0,00	kWh/rok	0,00	
		Oplaty state O_{m}	z $/ \mathrm{m}$-c	0,00	do analizy nie uwzględnia się opłat stałych
		Abonament Ab	z/fm-c	0,00	do analizy nie uwzględnia się opłat abonamentowych
Calkowite koszty eksploatacyine$=12 \cdot O_{\mathrm{m}}+12 \cdot \mathrm{Ab}+\Sigma \mathrm{B} \cdot \text { Cena jedn }=$			złfrok	1377,28	

Koszty inwestycyjne

Lp.	Rodzaj robót	llość robót	Cena jedn.	Koszty robót	Uzasadnienie przyjętych kosztów
1	Istniejący węzeł cieplny	1,0	0,00	0,00	
Całkowite koszty inwestycyjne Kw, $=$					zı
Budynek z alternatywnymi źródłami energii					
Dodatkowe informacje: ...					

Koszty eksploatacyjne

Lp.	Rodzaj robót	Zużycie paliwa	Jedn.	Koszty	Uwagi
1	Sieć elektroenergetyczna systemowa - Energia elektryczna	1080,22	kWh/rok	648,13	
2	Sieć elektroenergetyczna systemowa - Energia elektryczna	139,27	kWh/rok	83,56	
		Oplaty stale O_{m}	zł/m-c	0,00	do analizy nie uwzględnia się opłat stałych
		Abonament Ab	z $\ / \mathrm{m}$-c	0,00	do analizy nie uwzględnia się opłat abonamentowych
Całkowite koszty eksploatacyjne$K_{W, E}=12 \cdot O_{m}+12 \cdot A b+\Sigma B \cdot \text { Cena jedn }=$			zł/rok	731,69	

Koszty inwestycyjne

Lp.	llość robót	Cena jedn.	Koszty robót	Uzasadnienie przyjetych kosztów					
1	žródło ciepła - pompa ciepła w układzie cwu	1,0	14000,00	17220,00					
Całkowite koszty inwestycyjne $K_{W, 1}=$							zł	17220,00	

Wykres porównawczy kosztów inwestycyjnych systemu przygotowania ciepłej wody

Wykres porównawczy kosztów eksploatacyjnych systemu przygotowania ciepłej wody
12. Obliczenia optymalizacyjno-porównawcze dla wybranych systemów zapotrzebowania w energię

Wykres kosztów inwestycyjnych

d Wykres kosztów eksploatacyjnych
13. Wyniki analizy porównawczej i wybór systemu zaopatrzenia w energię
13.1 Analiza systemu ogrzewania i wentylacji

Nazwa	Projektowany	Alternatywny	
Koszty eksploatacyjne K $\mathrm{H}, \mathrm{E}^{\text {zł/rok }}$	20000,97	7650,88	
Procentowe zmniejszenie kosztów eksploatacyjnych \%	-	61,75	
Koszty inwestycyjne $\mathrm{K}_{\mathrm{H}, 1}$ zł	0,00	124476,00	
Procentowe zmniejszenie kosztów inwestycyjnych \%	-	\ldots	
Koszty eksploatacyjne w przeliczeniu na powierzchnie zł/m²rok	42,51	16,26	
Koszty inwestycyjne w przeliczeniu na powierzchnie zł/m²	0,00	264,56	
Roczne oszczędności kosztów Δ Or zł/rok	-	12350,08	
Prosty czas zwrotu inwestycji w źródła alternatywne SPBT	-	10,08	
WYNIKI ANALIZY: Zastosowanie źródeł alternatywnych jest korzystne pod względem eksploatacyjnym i nie			
korzystne pod względem inwestycyjnym			

13.2 Analiza systemu przygotowania ciepłej wody

13.5 Analiza zbiorcza opłacalności

Nazwa	Opłacalność	SPBT
System ogrzewania i wentylacji	nie	10,08
System przygotowania ciepłej wody	nie	26,67

14. Zestawienie kosztów inwestycyjno - eksploatacyjnych za okres 10,00 lat

Wykres zestawienia kosztów inwestycyjnych i eksploatacyjnych za okres 10,00 lat

Przedział czasowy	Wariant projektowany		Wariant alternatywny	
	Koszty inwestycyjne [zt]	Koszty eksploatacyjne [zł]	Koszty inwestycyjne [zł]	Koszty eksploatacyjne [zł]
0	0,00	-	141696,00	-
1	0,00	42756,50	141696,00	16765,15
2	0,00	64134,74	141696,00	25147,73
3	0,00	85512,99	141696,00	33530,30
4	0,00	106891,24	141696,00	41912,88
5	0,00	128269,49	141696,00	50295,46
6	0,00	149647,74	141696,00	58678,03
7	0,00	171025,99	141696,00	67060,61
8	0,00	192404,23	141696,00	75443,18
9	0,00	213782,48	141696,00	83825,76
10	0,00	235160,73	141696,00	92208,33

Środowiskowa analiza optymalizacyjno-porównawcza

Poznań, 07.2017

Spis treści:

1. Dane budynku
2. Zestawienie rocznego zapotrzebowania na energię użytkową
3. Dostępne nośniki energii
4. Warunki przyłączenia do sieci zewnętrznych
5. Opis systemów zapotrzebowania w energię do analizy porównawczej

- 6. Charakterystyka źródeł energii systemu ogrzewania i wentylacji

7. Charakterystyka źródeł energii systemu przygotowania ciepłej wody
8. Wykresy porównawcze zużycia nośników energii
9. Wskaźniki emisji zanieczyszczeń poszczególnych systemów i nośników energii
10. Emisja zanieczyszczeń poszczególnych systemów w budynku
11. Obliczenia optymalizacyjno-porównawcze emisji zanieczyszczeń (aspekt środowiskowy)
12. Wyniki analizy porównawczej i wybór systemu zapotrzebowania na energię

7
JTJ Projekt spółka z o. o. spółka komandytowa

1. Dane budynku

1.1. Dane adresowe:

Nazwa budynku: Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej
Adres budynku: Dz. nr 32, Arkusz nr 09, Obręb Poznań ul. Nowowiejskiego 51
Nazwa inwestora: Wielkopolska Izba Lekarska
Adres inwestora: Poznań, ul. Nowowiejskiego 51
1.2. Dane geometryczne:

* Przeznaczenie budynku: Użyteczności publicznej

Strefa klimatyczna: II
Stacja meteorologiczna: Poznań
Powierzchnia zabudowy $A_{z}=192,00 \mathrm{~m}^{2}$
Powierzchnia o regulowanej temperaturze $A_{f}=470,50 \mathrm{~m}^{2}$
Powierzchnia netto $A=467,66 \mathrm{~m}^{2}$
Kubatura po obrysie zewnętrznym $\mathrm{V}_{\mathrm{e}}=2281,09 \mathrm{~m}^{3}$
Kubatura ogrzewana budynku $V=1562,00 \mathrm{~m}^{3}$
a Liczba kondygnacji: 3

2. Zestawienie rocznego zapotrzebowania na energię użytkową

2.1. Zestawienie rocznego zapotrzebowania na energię użytkową dla systemu ogrzewania i wentylacji

2.1.1. System projektowany

Lp.	Rodzaj paliwa	Udział $\%$	$Q_{H, \text { nd }}[\mathrm{kWh} / \mathrm{rok}]$
1	Ciepło sieciowe z kogeneracji - Węgiel kamienny	100,0	27801,1

2.1.2. System alternatywny

Lp.	Rodzaj paliwa	Udział \%	Q $_{H, n d}[\mathrm{kWh} / \mathrm{rok}]$
1	Ciepło sieciowe z kogeneracji - Węgiel kamienny	100,0	27801,1

2.2. Zestawienie rocznego zapotrzebowania na energię użytkową dla systemu przygotowania ciepłej wody

2.2.1. System projektowany

Lp.	Rodzaj paliwa	Udział \%	Q w,nd $^{\text {[kWh/rok] }}$
1	Sieć elektroenergetyczna systemowa - Energia elektryczna	100,0	2203,6

2.2.2. System alternatywny

Lp.	Rodzaj paliwa	Udział \%	$\mathbf{Q}_{\text {w,nd }}[\mathrm{kWh} / \mathrm{rok}]$
1	Sieć elektroenergetyczna systemowa - Energia elektryczna	100,0	2203,6

3. Dostępne nośniki energii energia elektryczna, ciepło sieciowe z kogeneracji - węgiel kamienny 4. Warunki przyłączenia do sieci zewnętrznych energia elektryczna, ciepło sieciowe z kogeneracji - węgiel kamienny
4. Opis systemów zapotrzebowania w energię do analizy porównawczej

5. Charakterystyka źródeł energii systemu ogrzewania i wentylacji

6.1. Budynek projektowany

Rodzaj paliwa	Udział $\%$	$\eta_{H, t o t}$	H_{u}	Jedn.	$\mathbf{Q}_{\mathrm{k}, \mathrm{H}}[\mathrm{kWh} / \mathrm{rok}]$	Zużycie paliwa \mathbf{B}	Jedn.
Ciepło sieciowe z kogeneracji - Węgiel kamienny	100,0	0,84	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	33240,9	33240,9	$\mathrm{kWh} / \mathrm{ro}$ k
Sieć elektroenergetyczna systemowa - Energia elektryczna	-	-	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	2310,1	2310,1	$\mathrm{kWh} / \mathrm{ro}$ k

6.2. Budynek z alternatywnymi źródłami

Rodzaj paliwa	Udział $\%$	$\eta_{H, t o t}$	H_{u}	Jedn.	$\mathbf{Q}_{\mathrm{K}, \mathrm{H}}[\mathrm{kWh} / \mathrm{rok}]$	Zużycie paliwa \mathbf{B}	Jedn. Ciepło sieciowe z kogeneracji - Węgiel kamienny 100,0 2,41
Sieć elektroenergetyczna systemowa - Energia elektryczna	-	-	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	11546,9	11546,9	$\mathrm{kWh} / \mathrm{ro}$ k

6.3. Porównanie zużycia nośników energii dla budynku projektowanego i źródła alternatywnego

Zużycie nośników energii na ogrzewanie i wentylację

Wykres porównawczy zużycia nośników energii dla systemu ogrzewania i wentylacji
7. Charakterystyka źródeł energii systemu przygotowania ciepłej wody

7.1. Budynek projektowany

Rodzaj paliwa	Udział $\%$	$\eta_{w, t o t}$	H_{u}	Jedn.	$\mathbf{Q}_{k, w}[\mathrm{kWh} / \mathrm{rok}]$	Zużycie paliwa B	Jedn.
Sieć elektroenergetyczna systemowa - Energia elektryczna	100,0	0,96	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	2295,5	2295,5	$\mathrm{kWh} / \mathrm{ro}$ k
Sieć elektroenergetyczna systemowa - Energia elektryczna	-	-	1,00	$\mathrm{kWh} / \mathrm{k}$ Whh	0,0	0,0	$\mathrm{kWh} / \mathrm{ro}$ k

7.2. Budynek z alternatywnymi źródłami

Rodzaj paliwa	Udział $\%$	$\eta_{w, t o t}$	H_{u}	Jedn.	$\mathbf{Q}_{\mathrm{k}, \mathrm{w}}[\mathrm{kWh} /$ rok $]$	Zużycie paliwa B	Jedn.
Sieć elektroenergetyczna systemowa - Energia elektryczna	100,0	2,04	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	1080,2	1080,2	$\mathrm{kWh} / \mathrm{ro}$ k
Sieć elektroenergetyczna systemowa - Energia elektryczna	-	-	1,00	$\mathrm{kWh} / \mathrm{k}$ Wh	139,3	139,3	$\mathrm{kWh} / \mathrm{ro}$ k

7.3. Porównanie zużycia nośników energii dla budynku projektowanego i źródła alternatywnego

Zużycie nośników energii na przygotowanie cieplej wody

Sieć
elektroenergetycina
systemowa

Energia
elektryczna
[kWh/
rok]

Wykres porównawczy zużycia nośników energii dla systemu przygotowania ciepłej wody

- 8. Wykresy porównawcze zużycia nośników energii

Wykres zużycia nośników energii dla wszystkich systemów w budynku projektowanym

Zużycie nośników energii w budynku ze źródrami alternatywnymi			
COCWU			
0,0	5000,0	10000,0	15000,0
	CO		CIII
Gavas stablime 7) togenerast Traylet waticimy [bumble	11546,9		0,0
Sice sfekinencristyos brictrmowa	1974,4		1219,5
Enermia alakrysana 1140ns nots			

Wykres zużycia nośników energii dla wszystkich systemów w budynku ze źródłami alternatywnymi

Zużycie nośników energii dla wszystkich systemów w budynku

Wykres porównawczy zużycia nośników energii dla wszystkich systemów w budynku
9. Wskaźniki emisji zanieczyszczeń poszczególnych systemów i nośników energii Informacje uzupetniające:...

9.1. Budynek projektowany

System ogrzewania I wentylacii								
Rodzaj paliwa	Jedn.	SO_{2}	NO_{x}	CO	CO_{2}	PYt	SADZA	B-a-P
Ciepło sieciowe z kogeneracji - Węgiel kamienny	$\mathrm{kg} / \mathrm{kWh}$	0,000340	0,000770	0,000130	0,372400	0,000130	0,000000	0,000000
Sieć elektroenergetyczna systemowa - Energia elektryczna	$\mathrm{kg} / \mathrm{kWh}$	0,009100	0,002300	0,000690	0,812000	0,001500	0,000003	0,000000

- 9.2. Budynek z alternatywnymi źródłami

System ogrzewania i wentylacji								
Rodzaj paliwa	Jedn.	SO_{2}	NO_{x}	CO	CO_{2}	PYL	SADZA	B-a-P
Ciepło sieciowe z kogeneracji - Węgiel kamienny	$\mathrm{kg} / \mathrm{kWh}$	0,000340	0,000770	0,000130	0,372400	0,000130	0,000000	0,000000
Sieć elektroenergetyczna systemowa - Energia elektryczna	$\mathrm{kg} / \mathrm{kWh}$	0,009100	0,002300	0,000690	0,812000	0,001500	0,000003	0,000000

10. Emisja zanieczyszczeń poszczególnych systemów w budynku

10.1. Budynek projektowany

10.2. Budynek z alternatywnymi źródłami

System	Jedn.	SO_{2}	NO_{x}	CO	CO_{2}	PYŁ	SADZA	B-a-P
System ogrzewania i wentylacji	$\mathrm{kg} / \mathrm{rok}$	21,8930	13,4322	2,8634	5903,266 8	4,4627	0,0053	0,0001
System przygotowania cieplej wody	$\mathrm{kg} / \mathrm{rok}$	11,0973	2,8048	0,8414	990,2247	1,8292	0,0033	0,0001

11. Bezpośredni efekt ekologiczny

11.1. Tabela bezpośredniego efektu ekologicznego

Emitowane zanieczyszczenie	Budynek projektowany [kg/rok]	Budynekz alternatywnymi zródłami [kg/rok]	Efekt ekologiczny[kg/rok]	Redukcja emisji [\%]
SO_{2}	53,212242	32,990373	20,221868	38,00
$\mathrm{NO}_{\mathbf{x}}$	36,188247	16,237037	19,951211	55,13
CO	7,499139	3,704879	3,794260	50,60
CO_{2}	16118,618776	6893,491482	9225,127294	57,23
PYt	11,229618	6,291933	4,937684	43,97
SADZA	0,012435	0,008624	0,003811	30,65
B-a-P	0,000249	0,000172	0,000076	30,65

11.2. Wykresy bezpośredniego efektu ekologicznego

12. Wyniki analizy porównawczej i wybór systemu zaopatrzenia w energię

12.1. Obliczenia współczynników toksyczności

Wartości współczynnika toksyczności zanieczyszczeń obliczono w oparciu o Rozporządzenie Ministerstwa Środowiska z dnia 26.01.2010 r. w sprawie wartości odniesienia dla niektórych substancji w powietrzu(Dz.U. nr $87 / 2010$ poz.16).
$K_{\text {SO2 }}=e_{\text {SO2 }} / e_{\mathrm{t}}=20 / 20 \mathrm{mg} / \mathrm{m}^{3}=1,00$
$\mathrm{K}_{\mathrm{NOX}}=\mathrm{e}_{\mathrm{SO} 2} / \mathrm{e}_{\mathrm{t}}=20 / 40 \mathrm{mg} / \mathrm{m}^{3}=0,50$
$\mathrm{K}_{\mathrm{CO}}=\mathrm{e}_{\mathrm{SO} 2} / \mathrm{e}_{\mathrm{t}}=$ brak wymagań
$\mathrm{K}_{\mathrm{CO} 2}=\mathrm{e}_{\mathrm{SO} 2} / \mathrm{e}_{\mathrm{t}}=$ brak wymagań
$K_{\text {PYt }}=e_{\text {SO2 }} / e_{\mathrm{t}}=20 / 40 \mathrm{mg} / \mathrm{m}^{3}=0,50$
$K_{\text {SADZA }}=\mathrm{e}_{\mathrm{SO} 2} / \mathrm{e}_{\mathrm{t}}=20 / 8 \mathrm{mg} / \mathrm{m}^{3}=2,50$
$K_{\text {B-a. }}=e_{S O 2} / \mathrm{e}_{\mathrm{t}}=20 / 0,001 \mathrm{mg} / \mathrm{m}^{3}=20000,00$

12.2. Tabela emisji równoważnej

Emitowane					
zanieczyszczenie	Współczynnik toksyczności K	Emisja - Budynek projektowany [kg/rok]	Emisja- Budynek z alternatywnymi źródłami [kg/rok]	Emisja równoważna - Budynek projektowany [kg/rok]	Emisja równoważna - Budynek z alternatywnymi źródłami [kg/rok]
SO_{2}	1,00	53,212242	32,990373	53,212242	32,990373
NO_{X}	0,50	36,188247	16,237037	18,094124	8,118518
PYŁ	0,50	11,229618	6,291933	5,614809	3,145967
SADZA	2,50	0,012435	0,008624	0,031087	0,021559
B-a-P	20000,00	0,000249	0,000172	4,973972	3,449406
			81,926233	47,725823	

12.3. Wykres emisji równoważnej

12.4. Wybór systemu

- Na podstawie powyższej analizy środowiskowej wariantem optymalnym jest wariant alternatywny. Efekt środowiskowy wyrażony w emisji równoważnej jest o $41,7 \%$ ($34,20 \mathrm{~kg} / \mathrm{rok}$) korzystniejszym niż wariant projektowany.

[^0]: * Weryfikację poprawności danych w niniejszym zaświadczeniu można sprawdzić za pomocą numeru weryfikacyjnego zaświadczenia na stronie Pola Budownictwa.

[^1]: * Weryfikację poprawności danych w niniejszym zaświadczeniu można sprawdzić za pomocą numeru weryfikacyjnego zaświadczenia na stronie Polskiej Izby Inżynierów Budownictwa www.piib.org.pl lub kontaktując się z biurem właściwej Okręgowej Izby Inżynierów Budownictwa.

[^2]:

