|  | PROJEKT BUDOWLANY | EL |
| :--- | :--- | :--- |
|  | STADIUM DOKUMENTACJI |  |
| INWESTOR <br> ZAMAWIAJACY | Wielkopolska Izba Lekarska <br> ul. Nowowiejskiego 51 <br> 61-734 Poznań |  |
| JEDNOSTKA <br> PROJEKTOWA | Architekt Eugeniusz Skrzypczak AESK <br> Ul. Leśmiana 16 <br> 60-194 Poznań |  |
| OBIEKT | Budynek biurowy z salą konferencyjna Wielkopolskiej Izby Lekarskiej <br> przy ul. Nowowiejskiego 51 w Poznaniu- przebudowa, rozbudowa, <br> działka nr 32, arkusz nr 09, obręb Poznań <br> Kategoria obiektu: XVI |  |
| TEMAT | Projekt budowlany instalacji elektrycznych i teletechnicznych |  |
| DATA | lipiec 2017 |  |


| PROJEKTANT | mgr inż. Mariusz Wermiński upr. bud. nr WKP/0149/PWOE/07 |  |
| :---: | :---: | :---: |
| SPRAWDZAJACY | mgr inż. Ryszard Konieczka upr. bud. 302/81/Pw | i. 良ydzad Konieczka Pornday ul. Sgnoki 21 diowlaye ace $82 / 81 / \mathrm{Pw}$ |
| GŁÓWNY PROJEKTANT | dr hab. inż. arch. Eugeniusz Skrzypczak upr. bud. nr 244/84/PW |  |
|  | IMIE®, NAZWISKO, UPRAWNIENIA |  |

# Oświadczenie projektanta i sprawdzającego o sporządzeniu projektu budowlanego zgodnie z obowiązującymi przepisami oraz zasadami wiedzy technicznej 

My niżej podpisani:
Po zapoznaniu się z przepisami ustawy z dnia 7 lipca 1994r. „Prawo budowlane" (Dz. U. z 2003 r. Nr 207, poz. 2016, z późn. zm.), zgodnie z art. 20 ust. 4 pkt. 2 tej ustawy
oświadczamy, że projekt budowlany instalacji elektrycznych dotyczący inwestycji:

## BUDUNEK BIUROWY Z SALA KONFERENCYJNA <br> WIELKOPOLSKIEJ IZBY LEKARSKIEJ PRZY UL. NOWOWIEJSKIEGO 51 W POZNANIU - PRZEBUDOWA Z ROZBUDOWA KATEGORIA XVI

- Dziatka nr 32, Arkusz nr 09, Obręb Poznań ul. Nowowiejskiego 51, 61-734 Poznań

Inwestor:
Wielkopolska Izba Lekarska
Ul. Nowowiejskiego 51; 61-734 Poznań
został sporządzony zgodnie z obowiązującymi przepisami oraz zasadami wiedzy technicznej.

Projektant:


Sprawdzający


WIELKOPOLSKA
OKREGOWA
IZBA
INŻYNIERÓW
BUDOWNICTWA

## DECYZJA

Na podstawie art. 24 ust. 1 pkt 2 ustawy z dnia 15 grudnia 2000 r. o samorządach zawodowych architektów, inżynierów budownictwa oraz urbanistów (Dz. U. z 2001 r. Nr 5 poz. 42, z późn. zm.) i art. 12 ust. 1 pkt 1-5, art. 12 ust. 3 i 4, art. 13 ust. 1 pkt 1 i 2 oraz ust. 3 i 4, art. 14 ust. 1 pkt 5 ustawy z dnia 7 lipea 1994 r. Prawo budowlane (tekst jednolity: Dz. U. z 2006 r . Nr 156 poz. 1118 z pózn. zm.) oraz § 24 ust. 1 rozporzadzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r . w sprawie samodzielnych funkcji technicznych w budownictwie (Dz. U. Nr 83 poz. 578)

## decyzją Okręgowej Komisji Kwalifikacyjnej WOIIB otrzymuje

## Pan

Mariusz Wermiński
magister inżynier
kierunek: Elektrotechnika urodzony dnia 22 marca 1977 r. w Stalowej Woli

# UPRAWNIENIA BUDOWLANE nr ewidencyjny WKP/0149/PWOE/07 

## do projektowania i kierowania robotami budowlanymi bez ograniczeń w specjalności instalacyjnej w zakresie sieci, instalacji i urządzeń elektrycznych i elektroenergety cznych

## UZASADNIENIE

W związku z uwzględnieniem w całości żądania strony, na podstawie art. 107 § 4 K.p.a. odstępuje się od uzasadnienia decyzji. Zakres nadanych uprawnień budowlanych wskazano na odwrocie decyzji.

## Pouczenie

1.Podstawa do wykonywania samodzielnych funkcji technicznych w budownictwie stanowi wpis do centralnego rejestru Glównego Inspektora Nadzoru Budowlanego oraz na wpis na listę cztonkow wlaściwej izby samorządu zawodowego. 2.Od niniejszej decyzji stuzy odwolanie do Krajowej Komisji Kwalifikacyjnej Polskiej lzby Inżynierów Budownictwa w Warszawie, za pośrednictwem Wielkopolskiej Okregowej Komisji Kwalifikacyjnej Wielkopolskiej Okregowej Izby Inzynierow Budownictwa w Poznaniu w terminie 14 dni od daty jej doreczenia.


Na podstawie art. 12 ust. 1 pkt 1-5 oraz art. 13 ust. 3 i 4 ustawy Prawo budowlane
Pan Mariusz Wermiński jest upoważniony w specjalności instalacyjnej w zakresie sieci, instalacji i urządzeń elektrycznych i elektroenergetycznych do:

- projektowania, sprawdzania projektów budowlanych w specjalności objętej niniejszymi uprawnieniami i sprawowania nadzoru autorskiego,
- kierowania budowa lub innymi robotami budowlanymi
- kierowania wytwarzaniem konstrukcyjnych elementów budowlanych oraz nadzoru i kontroli technicznej wytwarzania tych elementów
- wykonywania nadzoru inwestorskiego
- sprawowania kontroli technicznej utrzymania obiektów budowlanych
bez ograniczeń.
- Zgodnie z § 24 ust. 1 rozporzadzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r. w sprawie samodzielnych funkcji technicznych w budownictwie, niniejsze uprawnienia budowlane uprawniaja do projektowania obiektu budowlanego i kierowania robotami budowlanymi zwiazanymi z obiektem budowlanym, takim jak: sieci, instalacje i urzadzenia elektryczne i elektroenergetyczne, w tym kolejowe, trolejbusowe i tramwajowe sieci trakcyjne wraz z urzadzeniami do zasilania i sterowania.

Na podstawie § 15 rozporządzenia Ministra Transportu i Budownictwa z dnia 28 kwietnia 2006 r. w sprawie samodzielnych funkcji technicznych w budownictwie, uprawnienia do projektowania stanowią podstawę do sporządzania projektu zagospodarowania działki lub terenu w zakresie w/w specjalności.


Otrzymuja:

1. Pan Mariusz Wermiński

62-020 Swarzędz, os. Kościuszkowców 31/13
2.Okregowa Rada Izby
3.Główny Inspektor Nadzoru Budowlanego
4.a/a


POLSKA
$12 \quad \mathrm{~B}$
INZYMIEROW
BUDOWNICTWA

Zaświadczenie<br>o numerze weryfikacyjnym:

WKP-4QB-75K-EWE *

Pan Mariusz Wermiński o numerze ewidencyjnym WKP/IE/0442/07 adres zamieszkania os. Gryniów 4/14, 62-020 Swarzędz

* jest członkiem Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa i posiada wymagane * ubezpieczenie od odpowiedzialności cywilnej.

Niniejsze zaświadczenie jest ważne do dnia 2017-09-30.

Zaświadczenie zostało wygenerowane elektronicznie i opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu w dniu 2016-09-16 roku przez:

Włodzimierz Draber, Przewodniczący Okręgowej Rady Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa.
(Zgodnie art. 5 ust 2 ustawy z dnia 18 września 2001 r. o podpisie elektronicznym (Dz. U. 2001 Nr 130 poz. 1450) dane w postaci elektronicznej opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu są równoważne pod względem skutków prawnych dokumentom opatrzonym podpisami własnoręcznymi.)

[^0]
## 

7 Pearsxir
If promeseczt s!

N: $302 / 31 / \mathrm{P}$

## DECYZJA O STHIERDZENIU FRZYGOTOWANIA ZAFODOFEGO


 rozporzadzeria Ministra Gospodarki Terenorej : Ochrony Srodowisks 2 dnti 20 lutego 1975 r.
 Obywatel nat PySzexd EOMIECZKE
magister inzynier eleytryk
(tytul nauko
urodzony ta dnía 30 styczaja
1954
r. $w$

Kaliszu
posiada pirygotowarle zawodowe upowatniajace do wyonywanla samodzialnaj funkejt $\qquad$ projehtenta
(rodzal turzesil)
w specjalnocd

Fi zabresie
(reefalluneja zenocowa)
MA-BCAMA


$\qquad$

1/ sporządzania projektón insteilacji elektryozaych,
2/ w budownictwie osób fizycznych - do kierowania, nadzorowania i kontrolowania budowy, kierowania i kontrolowania wytwarzania konstrukcyjuych elementón instalacji oraz oceniania i badania stanu technicznego instalacji elektrycznych.


(piodeta 1 plectean

$P O L S K A$
$12 \mathrm{~B} A$
INZYMIEROW
BUDOWNICTWA

Zaświadczenie<br>o numerze weryfikacyjnym:

WKP-72W-JZ4-ZPU *

## Pan Ryszard Konieczka o numerze ewidencyjnym WKP/IE/2243/01

 adres zamieszkania ul. Seneki 21, 60-461 Poznańjest członkiem Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa i posiada wymagane ubezpieczenie od odpowiedzialności cywilnej.

Niniejsze zaświadczenie jest ważne do dnia 2017-12-31.

Zaświadczenie zostało wygenerowane elektronicznie i opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu w dniu 2016-12-02 roku przez:

Andrzej Mikołajczak, Zastępca Przewodniczącego Okręgowej Rady Wielkopolskiej Okręgowej Izby Inżynierów Budownictwa.
(Zgodnie art. 5 ust 2 ustawy z dnia 18 września 2001 r. o podpisie elektronicznym (Dz. U. 2001 Nr 130 poz. 1450) dane w postaci elektronicznej opatrzone bezpiecznym podpisem elektronicznym weryfikowanym przy pomocy ważnego kwalifikowanego certyfikatu są równoważne pod względem skutków prawnych dokumentom opatrzonym podpisami własnoręcznymi.)

[^1]Wielkopolska Izba Lekarska<br>ul. Feliksa Nowowiejskiego 51<br>61-734 Poznań

Warunki Przylączenia do sieci elektroenergetycznej ENEA Operator Sp. z o.o.

| charakter obiektu | : budynek biurowy |
| :--- | :--- |
| lokalizacja obiektu | : Poznań, ul. Feliksa Nowowiejskiego $51, \mathrm{dz}$. nr 32 |
| warunki dotycza | : wzrostu mocy wistniejacym obiekcie |
| moc przylaczeniowa | $: 50 \mathrm{~kW}$ (wzrost mocy o 34 kW ) na napięciu $0,4 \mathrm{kV}$ |
| grupa przylączeniowa: IV |  |

I. MIEJSCE PRZYŁĄCZENIA
bez zmian - istniejące złącze kablowe ZK3 nr 4912 ul. Nowowiejskiego 51, obwód zasilany z MST-264
II. RODZAJ POLĄCZENIA Z SIECIA ORAZ ZAKRES NIEZBĘDNYCH ZMIAN W SIECI

1. zakres dotyczący ENEA Operator Sp. z o.o.:
1.1. zakres dotyczący niezbędnych zmian w sieci :

- bez zmian w sieci ENEA Operator
1.2. zakres dotyczący przyłącza:
- wykorzystać przyłącze istniejące,

2. zakres dotyczący podmiotu przylączanego :

- urządzenia Odbiorcy zasilające i rozdzielcze przystosować do zwiększonego poboru mocy
III. MIEJSCE DOSTARCZENIA ENERGII ELEKTRYCZNEJ
bez zmian, zaciski na wyjściu przewodów od zabezpieczenia w złączu kablowym, w kierunku instalacji podmiotu przyłączanego
Miejsce dostarczania energî elektrycznej stanowi jednocześnie granicę wlasności i eksploatacji urzqdzeńn
IV. MIEJSCE ZAINSTALOWANIA UKLADU POMIAROWO-ROZLICZENIOWEGO rozdzielnia główna obiektu
V. WYMAGANIA DOTYCZACE UKLADU POMIAROWO-ROZLICZENIOWEGO

Klient powinien w rozdzielni głównej ( w pomieszczeniu lub miejscu o zapewnionym dostępie dla personelu ENEA Operator Sp. z o.o. ) zabudować zabezpieczenie przedlicznikowe $w$ postaci bezpieczników mocy w obudowie lub osłonie przystosowanej do oplombowania oraz przygotować miejsce do zabudowy układu pomiarowo-rozliczeniowego, a w tym :

- zabudować szyny przekładnikowe w module przekładnikowym MP (wg wytycznych na rysunku załącznik nr 1),
- przygotować miejsce (w bezpośrednim sąsiedztwie przekładników pomiarowych ) do zabudowy przez ENEA Operator Sp. z o.o. modułu licznikowego ML z licznikiem, elementami i połączeniami obwodów wtómych oraz miejscem dla systemu pomiarowo-rozliczeniowego (układu transmisji danych ) wg wytycznych na rysunku (załącznik nr 2) - miejsce np. wydzielona szafka pomiarowa dia zunifikowanego modułu licznikowego,
- wykonać połączenia obwodów pierwotnych układu pomiarowo-rozliczeniowego z instalacją odbiorcy,
- urządzenia zasilające przedlicznikowe ( obwody pierwotne) w instalacji odbiorcy nalezy osłonić lub wygrodzić i przystosować do plombowania.
Wymagany półpośredni układ pomiarowo-rozliczeniowy w układzie trójsystemowym dostarczy i zabuduje ENEA Operator Sp. z o.o. Układ wyposažony będzie w przekładniki prądowe szynowe oraz moduł licznikowy z licznikiem, elementami i przewodami obwodów wtónych. Zastosować przekładniki prądowe o parametrach : $200 / 5 \mathrm{~A} / \mathrm{A}, \mathrm{kl} .0,2 \mathrm{~s} \mathrm{~S}_{2 \mathrm{n}}=5 \mathrm{VA}, \mathrm{FS} 5$, posiadające świadectwo wzorcowania przez GUM lub akredytowane w PCA laboratorium. Istniejący bezpośredni układ pomiarowy zlikwidować.


## VI. RODZAJ I USYTUOWANIE ZABEZPIECZEŃ

-w stacji transformatorowej i w złączu kablowym zabezpieczenia zwarciowe i przeciązeniowe - wg obliczeń

- zabezpieczenie przedlicznikowe u Odbiorcy $3 \times 80 \mathrm{~A}$

Jako zabezpieczenie przedlicznikowe zastosować bezpieczniki mocy
VII. WYMAGANY STOPIEN SKOMPENSOWANIA MOCY BIERNEJ
$\operatorname{tg} \varphi \leq 0,4$.
VIII. WARTOŚCI DO OBLICZEN

- złacze ZK3 ul. Nowowiejskiego 51 zasilane jest linią kablową o przekroju YAKY $4 \times 240 \mathrm{~mm}^{2} /$ YAKY $4 \times 120 \mathrm{~mm}^{2}$ df. $95 / 175 \mathrm{~m}$
- w stacji MST-264 zainstalowany jest transformator o mocy 630 kVA


## IX. DANE I INFORMACJE DOTYCZACE SIECI DLA DOBORU SYSTEMU OCHRONY OD PORAŻEŃ

sieć nn - układ pracy sieci ENEA Operator Sp. z o.o. - TNC (punkt rozdziału instalacji odbiorcy z układu TN-C na TNC-S powinien być realizowany w instalacji odbiorcy, punkt ten należy uziemić ).

## X. WYMAGANIA W ZAKRESIE SYSTEMÓW STEROWANIA DYSPOZYTORSKIEGO

Sieć elektroenergetyczna wyposażona jest w automatykę SPZ i SZR, która może powodować przerwy w zasilaniu trwające do kilku sekund. Odbiorniki energii elektrycznej wymagające ciągłości zasilania, wyłączające się samoczynnie po zaniku napięcia, należy dostosowac do automatycznego załączenia po powrocie napięcia.

## XI. WYMAGANIA W ZAKRESIE ZABEZPIECZENIA SIECI PRZED POWODOWANIEM ZAKLÓCEŃ ELEKTRYCZNYCH

W przypadku zainstalowania urządzeń mogących powodować zakłócenia, należy zainstalować odpowiednie urządzenia uniemożliwiające przeniesienie zakłóceń do sieci zasilającej np. filtrów wyższych harmonicznych lub urządzeń ograniczających wahania i odchylenia napięcia.

## XII. UWAGI DODATKOWE

1. Instalację odbiorczą należy wykonać zgodnie z wymaganiami normy PN-IEC 60364 , Rozporządzenia Ministra Infrastruktury $z$ dnia 12.04 .2002 ,w sprawie warunkow technicznych, jakim powinny odpowiadac budynki i ich usytuowanie".
2. Instalacje za miejscem dostarczania po stronie Klienta powinny byc. wykonane jego staraniem i kosztem przez osobę fizyczną lub prawną posiadającą odpowiednie uprawnienia. Instalowane urzadzenia powinny spehiać wymagania norm i posiadać odpowiednie atesty. Przyłączane urządzenia powinny posiadać wymaganą odpomośc na zaburzenia elektromagnetyczne oraz powinny być tak skonstruowane, aby nie wywolywały $w$ swoim środowisku zaburzen elektromagnetycznych o wartościach przekraczających odpornośc na te zaburzenia innych urządzeń występujących w tym środowisku.
3. Zrealizowanie zasilania na podstawie przedmiotowych warunków przyłączenia stanowić będzie podstawę do zawarcia w umowie świadczenia usług dystrybucji lub umowie kompleksowej standardowych parametrów jakościowych energii elektrycznej wakresie odchyleń częstotliwości i napięcia, odkształcenia napiẹcia, zawartości poszczególnych harmonicznych, wskaźnika dhugookresowego migotania światła, czasu trwania przerw nieplanowanych i planowanych w ciągu roku oraz czasu trwania jednorazowej przerwy nieplanowanej i planowanej, zgodnych z przepisami obowiązującego prawa.
4. Podstawę do rozpoczęcia realizacji prac projektowych i/lub budowlano-montazowych ujętych w niniejszych warunkach stanowi umowa o przyłączenie.
5. Realizacja w/w warunków wymaga równiez opracowania projektów budowlano-wykonawczych zgodnie z umową o przyłączenie do sieci. Projekty przed przystąpieniem do realizacji inwestycji podlegaja sprawdzeniu przez ENEA Operator Sp. zo.o. RD Poznań pod względem zgodności z warunkami przyłączenia do układu pomiarowo-rozliczeniowego włạcznie. Do projektu załączyć kpl. dodatkowych planów, schematów projektowanych urządzeń do układu pomiarowo-rozliczeniowego włącznie dla potrzeb naszego Rejonu.
6. Jeżeli przygotowanie instalacji odbiorcy do przyłączenia do sieci wymaga prowadzenia prac bezpośrednio przy urządzeniach ENEA Operator Sp. z o.o., a więc dopuszczenia do prac przez przedstawiciela ENEA Operator Sp. z o.o., działajacy w imieniu Klienta wykonawca tych prac (instalacji) powinien po zawarciu umowy o przylączenie do sieci dokonać zgloszenia zamiaru rozpoczęcia prac na drukach dostępnych w Biurze Obslugi Klienta w Poznaniu, przy ulicy Polnej 60 lub Panny Marii 2.

Termin ważności Warunków Przylączenia: 2 lata od daty ich doręczenia,



ML - modut licznikowy

- minimalna głębokość szafki pomiarowej lub przestrzeni dla montażu modułu licznikowego - 200 mm.
- montaż modułu licznikowego do 4 prętów gwintowanych M8x40 zamontowanych w szafie pomiarowej lub na ścianie
( prety - śruby przygotowane do plombowania,
- modul komunikacyjny, DCF i OB.-2 stanowią wyposażenie dodatkowe - ponadstandardowe,
- w szafce pomiarowej przewidzieć 2 otwory ( średni. min 30 mm ) do wprowadzenia wiązek przewodów obwodów wórnych
wariant 1

sayna przekładnikowa

wymiary do montaźu szyny przekladnikowed


Sthetuesmiedzy wian sxit

1. 12 Bém,

1243 Bm

## Zawartość opracowania

ZESTAWIENIE RYSUNKÓW:
I. OPIS TECHNICZNY

1. CZEŚĆ OGÓLNA
1.1. NaZWA IADRES INWESTYCJI
1.2. INWESTOR
1.3. JEDNOSTKA PROJEKTUJĄCA
1.4. Cel budowy
1.5. PODSTAWA OPRACOWANIA
1.6. ZASILANIE OBIEKTU
1.7. WŁACZNIK P. POŻ.
1.8. RozdZIELNICE
1.9. INSTALACJE ELEKTRYCZNE WEWNĘTRZNE:
1.10. SYSTEM ODDYMIANIA KLATKI SCHODOWEJ
1.11. ROBOTY KAbLOWE
1.12. POŁĄCZENIA WYRÓWNAWCZE
1.13. OCHRONA PRZED PRZEPIĘCIAMI
1.14. INSTALACJA ODGROMOWA
1.15. OCHRONA PRZECIWPORAŻENIOWA
1.16. Okablowanie strukturalne
1.15. SYSTEM KONTROLI DOSTĘPU KD
1.16. SYSTEM SYGNALIZACII WŁAMANIA I NAPADU SSWIN
1.17. SYSTEM TELEWIZJI DOZOROWEJ CCTV IP
1.18. SYSTEM AUDIO - VIDEO SALI KONFERENCYJNEJ
1.19. SYSTEM PRZYWOŁAWCZY WC NIEPEENOSPRAWNYCH
2. OBLICZENIA TECHNICZNE
1.1. BILANS MOCY
1.2. DOBÓR KABLA ZASILAJĄCEGO
1.3. OSZACOWANIE RYZYKA WYSTĘPUJĄCEGO W OBIEKCIE WSKUTEK DOZIEMNYCH WYŁADOWAŃ PIORUNOWYCH
1.4. SPRAWDZENIE SPADKÓW NAPIĘĆ

## Zestawienie rysunków:

1. WIL PB EL 000 - PZT instalacje elektryczne 1:500
2. WIL PB EL 001 - PZT instalacje elektryczne
3. WIL PB EL 002 - Schemat zasilania
4. WIL PB EL 003 - Rzut piwnicy - instalacja uziemiająca
5. WIL PB EL 004-Rzut piwnicy - instalacje elektryczne
6. WIL PB EL 005 - Rzut parteru - instalacje elektryczne
7. WIL PB EL 006 - Rzut | piętra - instalacje elektryczne
8. WIL PB EL 007 - Rzut dachu - instalacje elektryczne

## I. Opis techniczny

## 1. Cześć ogólna

### 1.1. Nazwa i adres inwestycji

Budynek biurowy z salą konferencyjną Wielkopolskiej Izby Lekarskiej przy ul. Nowowiejskiego 51 w Poznaniu- przebudowa, rozbudowa,
działka nr 32, arkusz nr 09, obręb Poznań
Kategoria obiektu: XVI

### 1.2. Inwestor

Wielkopolska Izba Lekarska
UI. Nowowiejskiego 51
61-734 Poznań

### 1.3. Jednostka projektująca

Architekt Eugeniusz Skrzypczak AESK
UI. Leśmiana 16
60-194 Poznań

### 1.4. Cel budowy

Celem inwestycji jest budowa nowego obiektu biurowego z salą konferencyjną. Celem opracowania jest uzyskanie pozwolenia na budowę.

### 1.5. Podstawa opracowania

- mapa do celów projektowych
- uzgodnienia z Inwestorem oraz firmą zlecającą projekt
- podkłady budowalne w skali 1:100
- warunki przyłączenia 46643/2016/OD5/ZR1
- obowiązujące przepisy i normy


### 1.6. Zasilanie obiektu

Zasilanie obiektu zaprojektowano zalicznikową linią kablową nn YKY $4 \times 35 \mathrm{~mm} 2$ układaną w ziemi od złącza ZK-2 usytuowanego w granicy działki. Złącze ZK-2 zasilone jest ze złącza również ustawionego $w$ granicy działki i stanowiącego własność ENEA Operator. W złączu ENEA umiejscowiony jest licznik do pomiaru energii elektrycznej. Do złącza ZK-2 należy podłączyć również istniejący budynek.
W celu wprowadzenia kabla do budynku należy na etapie wykonywania płyty fundamentowej umieścić w niej rurę AROT DVR 110 zakończoną kolanem 90 stopni. Rurę wyprowadzić z zapasem ponad posadzkę w pomieszczeniu technicznym zgodnie z rysunkiem. Na zewnątrz po wyjściu rury z budynku nałożyć kolano 90 stopni i następnie ułożyć rurę w pionie do poziomu $-0,7 \mathrm{~m}$. W rurze pozostawić pilota. Po wciągnięciu kabla zasilającego rurę zabezpieczyć przed wnikaniem wilgoci.

Zasilanie rozdzielnicy głównej wykonać od dołu. Na kablu oraz zaciskach wyłącznika po zadziałaniu przeciwpożarowego wyłącznika prądu pozostanie napięcie.

### 1.7. Włącznik p. poż.

Główny wyłącznik p. poż. usytuowany jest przy wejściu głównym do budynku - w wiatrołapie. Wyłącznik (przycisk w czerwonej obudowie) zamontować na wysokości $1,20 \mathrm{~m}$ i odpowiednio oznakować. Wyłącznik okablować przewodem HDGs $2 \times 1,5 \mathrm{~mm} 2$. Zadziałanie przycisku spowoduje odłączenie prądu w całym budynku z wyjątkiem urządzeń potrzebnych do akcji gaśniczej tj. zestawu hydroforowego oraz centralki oddymiania klatki schodowej.

### 1.8. Rozdzielnice

Rozdzielnicę główną RG wykonać jako przyścienną na cokole ○ IP 54. Podejście kablem zasilającym wykonać od dołu, odpływy od góry. Rozdział sieci z TN-C na TN-S w rozdzielnicy głównej. Punkt rozdziału uziemić. Z rozdzielnicy głównej RG zasilić wszystkie urządzenia w piwnicy oraz na parterze a także oświetlenie zewnętrzne.

Do zasilania urządzeń na I piętrze i na dachu projektuje się rozdzielnicę RP usytuowaną w komunikacji na I piętrze. Rozdzielnice wykonać jako wtynkową z drzwiami dopasowanymi do charakteru pomieszczenia. Szczegółowe rozwiązania rozdzielnic zostaną przedstawione w projekcie wykonawczym.

### 1.9. Instalacje elektryczne wewnętrzne:

## - instalacja oświetlenia podstawowego

Do oświetlenia pomieszczeń przyjęto oprawy oświetleniowe LED. Oprawy montowane będą zgodnie z przeznaczeniem i instrukcją montażu producenta. Obliczenia natężenia oświetlenia stanowią załącznik do dokumentacji archiwalnej. Zaprojektowano oprawy oświetlenia w porozumieniu z architektem.

Natężenie oświetlenia w pomieszczeniach zaprojektowano zgodnie z PN-EN 12464-1:2012 „Światło i oświetlenie - oświetlenie miejsc pracy - miejsca pracy we wnętrzach". Wartości natężenia przyjęte do obliczeń:
Pomieszczenia biurowe (praca przy komputerach) - 500 lx ,
Pomieszczenia socjalne (szatnie, łazienki, toalety) - 200 lx , Obszary ruchu i korytarze - 100 lx .
Instalacja oświetleniowa zaprojektowana jest przewodami YDYżo-750V, układanymi w korytkach kablowych, ceownikach montażowych oraz w ostonie z rurek mocowanych na uchwytach na ścianach i konstrukcji budynku.

Sterowanie oświetleniem podstawowym projektuje się przy pomocy łączników. Producent łączników zostanie podany w projekcie wykonawczym.

## - instalacja oświetlenia awaryjnego

Oświetlenie awaryjne załączy się po zaniku napięcia podstawowego i będzie zasilane z wbudowanych w oprawy baterii akumulatorów. Zaprojektowano oprawy z czasem podtrzymania 1 h i układem „autotestu". Oprawy montowane na zewnątrz budynku wyposażyć w grzałkę umożliwiającą pracę oprawy w niskich temperaturach. W całym obiekcie zaprojektowano również oświetlenie
ewakuacyjne. W przejściach, korytarzach i nad wyjściami zamontowane będą oprawy kierunkowe z napisem "Wyjście Ewakuacyjne" wraz z odpowiednimi piktogramami. Wszystkie oprawy oświetlenia awaryjnego winny być zgodne z normami oraz posiadać odpowiednie certyfikaty bezpieczeństwa dopuszczające je do stosowania w budownictwie.

## - instalacja oświetlenia zewnętrznego

Oświetlenie zewnętrzne należy zasilić z rozdzielnicy RG. Załączanie opraw oświetleniowych odbywać się bę̇dzie poprzez styk zegara astronomicznego z możliwością załączenia ręcznego przełącznikiem. Rozmieszczenie opraw przedstawiono na rysunku WIL PB EL 002.

## - instalacja do gniazd wtyczkowych

Instalację gniazd wtyczkowych zaprojektowano przewodami YDYżo -750V układanymi w korytkach kablowych, ceownikach montażowych oraz w osłonie z rurek mocowanych na uchwytach na ścianach i konstrukcji budynku. Rozmieszczenie gniazd w zależności od charakteru pomieszczenia. Zaprojektowano gniazda porządkowe zlokalizowane przy wejściu do pomieszczenia i w komunikacji montaż $0,3 \mathrm{~m}$. W pomieszczeniach socjalnych (aneks kuchenny, przedsionki WC) zastosować gniazda o IP 44 - wysokość montażu zostanie określona w projekcie wykonawczym. W pomieszczeniach biurowych i salkach konferencyjnych gniazda ogólne i komputerowe montować w zestawach PEL wraz z gniazdami teleinformatycznymi w puszkach podłogowych bądź jako podtynkowe na ścianie. Dobór puszek podłogowych jak i szczegółowa lokalizacja zostanie przedstawiona w projekcie wykonawczym.

## - instalacja do odbiorników technologicznych

Instalację do odbiorników technologicznych wykonać zgodnie z DTR-kami urządzeń dostarczanymi przed producentów poszczególnych urządzeń. Żasilanie urządzeń technologicznych obejmuje

- centrale wentylacyjne,
- winde,
- zestaw hydroforowy,
- przepompownię kanalizacji sanitarnej,
- rolety.

Na potrzeby niniejszego opracowania zasilnie urządzeń technologicznych przygotowano zgodnie z wytycznymi branżowymi. Dobór przewodów oraz zabezpieczeń do poszczególnych urządzeń zostanie opracowany w projekcie wykonawczym.

### 1.10. System oddymiania klatki schodowej

Zasilanie i sterowanie urządzeniami służącymi do oddymiania (klapy dymowe oraz drzwi wejściowe napowietrzające) wykonać z dedykowanej centralki COD. Zasilanie centralki wykonać z przed wyłącznika p.poż. Wyzwalanie oddymiania odbywać się będzie ręcznie poprzez wciśnięcie przycisku alarmowego albo automatycznie po wykryciu przez optyczną czujkę dymu pożaru w obrębie klatki schodowej. Siłowniki elektryczne do klap i drzwi w zakresie dostawców urządzeń

### 1.11. Roboty kablowe

Kabel zasilający oraz kable oświetlenia zewnętrznego układać bezpośrednio w ziemi na głębokości 70 cm . Kable ułożyć na warstwie piasku o grubości co najmniej 10 cm , taką samą grubością piasku zasypać kable po ich ułożeniu. Kolejno nasypać warstwę rodzimego gruntu o grubości co najmniej $15 \mathrm{~cm} / \mathrm{bez}$ kamieni i gruzu/, a następnie przykryć folią z tworzywa sztucznego o

### 1.12. Połączenia wyrównawcze

W pomieszczeniu technicznym gdzie umiejscowiona jest rozdzielnica główna RG obok rozdzielnicy głównej zaprojektowano główny zacisk uziemiający GZU. Dodatkowo w wybranych pomieszczeniach technicznych zaprojektowano zaciski uziemiające EC, połączone przewodem uziemiającym z uziomem fundamentowym. Z zaciskami GZU i EC należy łączyć :

- metalową konstrukcję budynku,
- metalowe rury instalacyjne,
- metalowe korytka kablowe,

Połączenia wykonać przewodami LYżo10, w sposób metaliczny stały przy pomocy połączeń skręcanych (obejmy dwuśrubowe). Końcówki przewodów przed połączeniem z elementami stalowymi ocynować lub stosować podkładki bimetaliczne. Wszystkie przewody wyrównawcze oraz przewody uziemiające, powinny być oznaczone dwubarwnie, barwą zielono-żóttą.

### 1.13. Ochrona przed przepięciami

Dla ograniczenia poziomu przepięć mogących dochodzić do urządzeń w RG przewiduje się ograniczniki przepięć typu $B+C$, natomiast w rozdzielnicy RP ochronniki typu $C$.

### 1.14. Instalacja odgromowa

Przyjmuje się na podstawie obliczeń poziom ochrony IV czyli skuteczność urządzenia piorunochronnego 0,80. Przyjęto zasadę wykorzystania tam gdzie to możliwe konstrukcyjnych elementów budynku. Przewody odprowadzające wykonać drutem FeZn fi 8 i prowadzić w rurce winidurowej grubościennej pod elewacją. Jako zwody poziome na dachu wykorzystać opierzenie attyk. Szczegółowe rozwiązanie zostanie podane w projekcie wykonawczym. Do zwodów poziomych niskich na dachu przyłączyć wszystkie metalowe elementy wystające ponad dach. Wszystkie urządzenia posiadające zasilanie elektryczne znajdujące się na dachu umieszczone są pod specjalną konstrukcją stalową która stanowi dla nich ochronę odgromową.

Instalację uziemiającą - uziom fundamentowy - wykonać bednarką stalowa ocynkowana $30 \times 4 \mathrm{~mm}$. W gruncie zamontować skrzynki gdzie wykonać złącza łącząc przewody odprowadzające z przewodem uziemiającym.

### 1.15. Ochrona przeciwporażeniowa

Zasilanie obiektu zaprojektowano w układzie sieci TN-C-S, rozdziału na sieć TN-S nalė̇y dokonać w rozdzielnicy głównej RG. Wszystkie obwody odbiorcze wykonać w układzie sieci TN-S. Jako ochronę przed porażeniem prądem elektrycznym zastosowano samoczynne wyłączenie zasilania, z
wykorzystaniem urządzeń ochronnych przetężeniowych i różnicowoprądowych oraz połączenia wyrównawcze.
Dostępne części przewodzące tj. części metalowe urządzeń, które wskutek uszkodzenia izolacji mogą znaleźć się pod napięciem, takie jak:

- metalowe obudowy aparatów i urządzeń elektrycznych,
- kołki ochronne gniazd wtyczkowych,
- metalowe obudowy opraw oświetleniowych, powinny zostać połączone z przewodem ochronnym.
Przewody powinny posiadać oznaczenia barwne zgodne z normą PN-EN 60446:2010.
Przewody należy oznaczać następująco:
- przewód neutralny N, barwą jasnoniebieską,
- przewód ochronny PE, kombinacją dwubarwną zielono-żółtą.

Przed oddaniem instalacji do eksploatacji należy dokonać sprawdzenia skuteczności ochrony przeciwporażeniowej i pomiarów rezystancji izolacji

### 1.16. Okablowanie strukturalne

System okablowania strukturalnego ma integrować połączenia teleinformatyczne kategoria 6 / klasa E nieekranowane rozmieszczone w poszczególnych pomieszczeniach.
Okablowanie strukturalne (teleinformatyczne) zaprojektować zgodnie z zaleceniami producenta tak, aby można było uzyskać od producenta certyfikację instalacji na okres minimum 25 lat.
System okablowania strukturalnego zaprojektować z wykorzystaniem osprzętu nieekranowanego kategoria 6 / klasa E, a w szczególności nieekranowanych gniazd i paneli rozdzielczych kategorii 6 / klasa E, oraz skrętki nieekranowanej U/UTP kategorii 6 / klasa E.
Standardowe przyłącze elektryczno - logiczne (PEL) składać się będzie z dwóch, lub czterech gniazd komputerowych RJ45 i gniazd zasilania dedykowanego.
Przyjęty w projekcie system okablowania powinien zapewniać możliwość zastosowania dowolnej technologii sieci LAN. Aby zagwarantować powtarzalne parametry pasma roboczego, tj. Klasy E oraz potwierdzić zgodność parametrów transmisyjnych proponowanych modułów gniazd z obowiązującymi normami producent ma posiadać certyfikaty wystawione przez niezależne i akredytowane laboratorium badawcze, (np.: DELTA, GHMT, ETL), dotyczące zgodności komponentowej z normą ISO/IEC 11801 Amd. 2 dla kategorii 6.
Urządzenia aktywne dla obsługi okablowania strukturalnego oraz elementy pasywne zostaną umieszczone w specjalnej szafie aparaturowej (dystrybucyjnej) zwanej GPD (główny punkt dystrybucyjny).
Szafa aparatowa pozwala na umieszczanie w niej urządzeń i osprzętu o standardowej szerokości 19" mocowanego bezpośrednio do konstrukcji szafy lub o mniejszej szerokości na półkach aparatowych.

### 1.15. System kontroli dostępu KD

System kontroli dostępu KD zaprojektować w oparciu o system wideodomofonowy z modułem wywołania pozwalającą wejście osobą uprawnionym (podanie kodu na klawiaturze)na teren chroniony lub osobom nie uprawnionym wejść na teren chroniony po uprzednim wywołaniu przez wideodomofon i decyzji o wpuszczeniu.

### 1.16. System sygnalizacji włamania i napadu SSWiN

Charakterystyka projektowanego budynek „Rozbudowy siedziby Wielkopolskiej Izby Lekarskiej przy ulicy Nowowiejskiego w Poznaniu". W obiekcie znajdować się będą:

- pomieszczenia biurowe i techniczne, - pomieszczenia gospodarcze i sanitarne związane z funkcjami podstawowymi.

Na obiekcie rozmieszczone zostaną kamery pozwalające śledzić osoby znajdujące się na zewnątrz budynku oraz kamery wewnątrz obserwujące główne ciągi komunikacyjne.
Budynek będzie wyposażony w urządzenia alarmowe nadzorujące stan bezpieczeństwa obiektu, sprzęt telewizji dozorowej CCTV IP, elementy obsługowe systemu SSWiN.
Charakter obiektu i jego przeznaczenie generują wobec siebie zagrożenia o charakterze kryminalnym, w tym głownie: włamaniem, kradzieżami.

Na podstawie przeprowadzonych rozważań analizowany obiekt można zaliczyć do kategorii zabezpieczeń Grade 2 dla instalacji o średnim stopniu ryzyka. Zastosowany system sygnalizacji włamania i napadu powinien mieć cechy systemu Grade 2 - potencjalny intruz lub włamywacz posiada ograniczoną wiedzę na temat systemów alarmowych oraz ma dostęp do narzędzi podstawowych i przyrządów ręcznych.
Strefy nadzoru systemu alarmowego nadzorowane będą przez urządzenia Grade 2. Dodatkowo obszar dozorowy zostanie uzupełniony o urządzenia innych systemów zabezpieczenia elektronicznego tj. system telewizji dozorowej CCTV IP co w znacznym stopniu obniża poziom ryzyka włamaniem lub zagrożenia innymi czynami przestępczymi.
Do neutralizacji potencjalnych zagrożeń zastosowane zostaną następujące systemy zabezpieczenia:

- system sygnalizacji włamania i napadu SSWiN,
- system nadzoru wizyjnego CCTV IP.

W projekcie zastosować mikroprocesorową centralę alarmowa min. Grade 2, wyposażoną w odpowiedni zasilacz, w niezbędne do pracy karty funkcyjne, interfejsy sterujące i transmisyjne, panel wyświetlacza w języku polskim, obudowę z opisami w języku polskim. Czujki PIR Grade 2. Zastosować czujki magnetyczne Grade 2.
Na zewnątrz obiektu umieścić sygnalizatory optyczno-akustyczne. Do centrali alarmowej podłączyć zestaw urządzeń przeznaczony do transmisji sygnałów alarmowych do zewnętrznego centrum odbiorczego alarmów (typ zależny od firmy która zostanie wybrana do ochrony obiektu).

### 1.17. System telewizji dozorowej CCTV IP

System telewizji dozorowej CCTV zaprojektować jako system IP. Wszystkie kamery zasilane będą w standardzie PoE z wieloportowego portowego przełącznika zainstalowanego w LPD i zasilanego napięciem gwarantowanym. Zastosować rejestratory wieloportowe (ilość portów niezbędna do obsługi zaprojektowanych kamer) zainstalowane w LPD, w rejestratorze (rejestratorach) będą zainstalowane dyski twarde HDD 4 TB niezbędne do obsługi systemu. W wyznaczonym pomieszczeniu będzie zainstalowane stanowisko nadzoru składające się komputera PC i dwóch monitorów 22".

System telewizji dozorowej CCTV objęte zostaną:

- wejścia do budynku,
- elewacja budynku i miejsca parkingowe,
- ciągi komunikacyjne
- oraz inne miejsca wskazane przez użytkownika.


### 1.18. System Audio - Video Sali konferencyjnej

A-V zaprojektować w oparciu o system projekcji, nagłośnienia i sterowania.
W systemie przewidzieć zastosowanie projekcji z wykorzystaniem monitorów multimedialnych wysokiej klasy o odpowiednich parametrach dal projektowanej Sali konferencyjnej.
W systemie nagłośnienia przewidzieć wysokiej jakości głośniki zasilane z wzmacniacza z wbudowanym mikserem oraz mikrofony przewodowe i bezprzewodowe.
System sterowania centralnego sali konferencyjnej ma umożliwić uproszczenie działania całości systemu audiowizualnego. Skomplikowane czynności poprzedzające właściwe przygotowanie projekcji - czyli opuszczenie ekranu, załączenie wideoprojektora, skonfigurowanie przełączników wizyjnych i fonicznych dla projekcji obrazu z towarzyszącym dźwiękiem np. z komputera, ma zostać wykonane po przez naciśnięciem jednego klawisza na ekranie sterującym (w zależności od przyjętego scenariusza). Analogicznie ma wygląda zakończenie projekcji - osoba prowadząca wciskając pojedynczy klawisz nie musi pamiętać o wyłączeniu poszczególnych urządzeń. System sterowania powinien umożliwiać oczywiście indywidualną kontrolę poszczególnych urządzeń (np. opuszczenie/podniesienie ekranu).

System zintegrowanego sterowania powinien umożliwić sterowanie:

- monitorami,
- roletami elektrycznymi (opcja),
- głośnością źródeł AV,
- źródłami sygnału (PC, DVD, TV),
- oświetleniem.


### 1.19. System przywoławczy WC niepełnosprawnych

W WC dla niepełnosprawnych należy przewidzieć system przywoławczą pozwalający na wezwanie pomocy osoba niepełnosprawnym.

Uwaga końcowa:
Całość robót wykonać zgodnie z „Warunkami Technicznymi Wykonania i Odbioru Robót Budowlano Montażowych", przy zachowaniu przepisów bhp i ppoż. oraz wytycznych producentów materiałów i urządzeń.

## 1. Obliczenia techniczne

### 1.1. Bilans Mocy




### 1.2. Dobór kabla zasilającego

$$
\begin{aligned}
& \mathrm{Pz}=49,09 \mathrm{~kW} \\
& \mathrm{I}_{\mathrm{B}}=76,28 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{n}}=80 \mathrm{~A} \\
& \text { Linia zasilająca YKY } 4 \times 35 \quad \mathrm{D}, 52-\mathrm{C} 3 \\
& \mathrm{I}_{\mathrm{B}}=76,28 \mathrm{~A}<\mathrm{I}_{\mathrm{n}}=80 \mathrm{~A}<\mathrm{I}_{2}=103 \\
& \mathrm{I}_{2}=128 \mathrm{~A}<1,45 \times \mathrm{I}_{2}=149,35 \mathrm{~A}
\end{aligned}
$$

### 1.3. Oszacowanie ryzyka występującego w obiekcie wskutek doziemnych wyładowań piorunowych

Obliczenia przedstawiono w załączniku.

### 1.4. Sprawdzenie spadków napięć

| Lp. | Obwód <br> od - do | Moc <br> zapotrz.czynn <br> a | Długość <br> obwodu | Linia <br> zasilaj. | Spadek <br> napiecia |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | kW | m | $\mathrm{mm}^{2}$ | $\%$ |
| 1. | ZK-2 - RG | 49,09 | 65 | YKY $4 \times 35$ | 0,4 |










[^0]:    * Weryfikację poprawności danych w niniejszym zaświadczeniu można sprawdzić za pomocą numeru weryfikacyjnego zaświadczenia na stronie Polskiej lzby Inżynierów Budownictwa www.piib.org.pl lub kontaktując się z biurem właściwej Okręgowej Izby Inżynierów Budownictwa.

[^1]:    * Weryfikację poprawności danych w niniejszym zaświadczeniu można sprawdzić za pomocą numeru weryfikacyjnego zaświadczenia na stronie Polskiej Izby Inżynierów Budownictwa www.piib.org.pl lub kontaktując się z biurem właściwej Okręgowej Izby Inżynierów Budownictwa.

